您好,欢迎来到中国测试科技资讯平台!

首页> 数字期刊群 >本期导读>微波消解-电感耦合等离子体发射光谱法测定含铁尘泥中钾钠

微波消解-电感耦合等离子体发射光谱法测定含铁尘泥中钾钠

792    2022-03-01

免费

全文售价

作者:周桂海, 王德智, 胡宏卫

作者单位:上海梅山钢铁股份有限公司技术中心,江苏 南京 210039


关键词:钾;钠;微波消解;电感耦合等离子体原子发射光谱法;含铁尘泥


摘要:

含铁尘泥样品经过高温灼烧后,盐酸、硝酸、氢氟酸混酸微波消解、电感耦合等离子体原子发射光谱法测定钾钠含量。选择高频功率为1150 W,观测高度为10 mm,积分时间8 s;钾分析线波长766.490 nm,钠分析线波长589.592 nm,钾钠光谱强度与质量浓度之间线性回归系数分别为0.9998和0.9997,检出限分别为0.0081 mg/L,0.057 mg/L;相对标准偏差(RSD, n=11)分别为0.44%~1.59%,0.27%~1.79%;加标回收率分别为99.2%~101.4%,98.8%~101.4%。与经典原子吸收光谱法比对,检测结果吻合。


Determination of K and Na in iron-bearing dust and sludge by ICP-AES after microwave digestion
ZHOU Guihai, WANG Dezhi, HU Hongwei
Technology Center, Shanghai Meishan Iron and Steel Co., Ltd., Nanjing 210039, China
Abstract: After burning at high temperature, the samples of iron-bearing dust and sludge was dissolved by microwave digestion. K and Na in iron-bearing dust and sludge were determined by ICP-AES. High-frequency power was selected with 1150 W, observed altitude was selected with 10 mm and the integration time was selected with 8 s. The 766.490 nm spectral line was selected as K analysis line, and the 589.592 nm spectral line was selected as Na analysis line. The linear regression coefficients between the spectral intensity and mass concentration of K and Na were 0.9998 and 0.9997, with detection limit of 0.0081 mg/L, 0.057 mg/L, and valued of RSD (n=11) were found in the range of 0.44%-1.59%, 0.27%-1.79%. Recovery rates were found in the range of 99.2%-101.4%, 98.8%-104.4%. The proposed method was used to the determination of K and Na in iron-bearing dust and sludge, giving determining values in accordance with atomic absorption spectrometry.
Keywords: kalium;natrium;microwave digestion;ICP-AES;iron-bearing dust and sludge
2022, 48(2):75-79  收稿日期: 2020-10-02;收到修改稿日期: 2020-12-28
基金项目:
作者简介: 周桂海(1979-),男,江苏南京市人,高级工程师,硕士,主要从事钢铁材料分析测试研究工作
参考文献
[1] 杨俊, 陈雪莲, 刘文欣, 等. 微波消解样品-火焰原子吸收光谱法测定焦炭灰中钾、钠含量[J]. 理化检验-化学分册, 2013, 49(5): 529-530,534
[2] 刘桂珍, 丁来中, 杨莹雪, 等. 火焰原子吸收光谱法测定长石中的钾和钠[J]. 化学分析计量, 2018, 27(4): 77-80
[3] 王晓辉, 胡晓燕, 王明海. 火焰原子吸收光谱法测定高纯氯化铷中的钠、钾[J]. 化学分析计量, 2005, 14(2): 48-49
[4] 姬海博, 宋立仙. 原子吸收光谱法测定蒽油中金属含量[J]. 精细与专用化学品, 2015: 23
[5] 唐名标. 粉末压片制样-X射线荧光光谱法测定铁矿石中钾、钠、钛、铅、锌、砷[J]. 福建冶金, 2018, 47(3): 50-53
[6] 吕善胜, 徐金龙, 曲强. 理论ɑ系数和经验系数法相结合校正-X射线荧光光谱法测定铁矿石中14种组分[J]. 冶金分析, 2016, 36(4):.46-51
[7] 王曼娟, 嵇龙, 蔡璐. X射线荧光光谱法测定含铁原料中钾、钠、锌含量[J]. 中国无机分析化学, 2018, 8(2): 28-31
[8] 程益清, 胡青, 毛秀红. 离子色谱法测定瓜蒌皮注射液中氯离子、钠离子和铵离子的含量[J]. 中国医药工业杂志, 2020, 51(3): 396-399
[9] 韩宛汝, 吴婧, 张宣, 等. 离子色谱法测定水中钠、钾、镁、钙[J]. 供水技术, 2019, 13(1): 56-58, 61
[10] 陈国娟, 庄驷耕, 徐晓欣. 无水偏硼酸锂熔融-电感耦合等离子体发射光谱法(ICP-AES)测定岩屑样品中的造岩元素[J]. 当代化工, 2018, 47(6): 1314-1316,1320
[11] 胡艳巧, 程文翠, 支云川, 等. 四酸溶矿-电感耦合等离子体发射光谱法测定铬铁矿中多种元素[J]. 分析实验室, 2016, 35(11): 1312-1316
[12] 年季强, 顾锋, 朱春要, 等. 微波消解-电感耦合等离子体原子发射光谱法测定萤石中硅铁镁钾钠磷硫[J]. 冶金分析, 2015, 35(4): 39-43
[13] 李传文,魏圆圆,陈翔宇,等. 基于非接触式电导信号的土壤速效钾含量检测方法[J]. 分析测试学报, 2020, 39(7): 851-859
[14] 徐聪, 赵婷, 池海涛, 等. 微波消解-ICP-MS法测定土壤及耕作物小麦中的8种重金属元素[J]. 中国测试, 2019, 45(5): 85-92
[15] 李常雄, 邹海民, 杨晓松, 等. 微波消解-电感耦合等离子体发射光谱法测定松茸中9种金属元素[J]. 中国测试, 2019, 45(10): 66-70
[16] 管晓颖, 叶国晨. 微波消解ICP-AES法检测马氏体时效钢18Ni300粉体成分[J]. 中国测试, 2018, 44(3): 53-56