您好,欢迎来到中国测试科技资讯平台!

首页> 数字期刊群 >本期导读>高分子材料生物降解性检测方法研究进展

高分子材料生物降解性检测方法研究进展

1347    2022-10-26

免费

全文售价

作者:黄开胜1, 赵彦1, 张锡辉2, 丁琪琪1,2, 徐董育1

作者单位:1. 深圳市计量质量检测研究院,广东 深圳 518000;
2. 清华大学 深圳国际研究生院环境与生态研究院,北京 100084


关键词:塑料;微塑料污染;生物降解材料;检测;标准


摘要:

生物降解材料是指在自然界如土壤、沙土等条件下,或特定条件如堆肥、厌氧消化或水性培养液等条件下,能被微生物作用降解,并最终完全降解变成二氧化碳(CO2)或/和甲烷(CH4)、水(H2O)及其所含元素的矿化无机盐以及新的生物质的材料。高分子材料的生物降解过程受其自身理化性质、微生物种类和降解环境等多种因素的影响。现有的生物降解性能检测方法标准很多,大体可分为三类,即好氧微生物降解、厌氧微生物降解和其他检测方法。塑料制品的生物降解性检测对于市场监管至关重要,该文依据不同降解环境,对现有的生物降解性检测方法进行归纳整理并分析其优缺点,旨在为生物降解材料领域检测和研发提供参考。


Research progress of biodegradability testing methods of polymer materials
HUANG Kaisheng1, ZHAO Yan1, ZHANG Xihui2, DING Qiqi1,2, XU Dongyu1
1. Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518000, China;
2. Shenzhen International Graduate School, Institute of Environment and Ecology, Tsinghua University, Beijing 100084, China
Abstract: Biodegradable material represents the materials can be degraded by microorganisms in nature conditions (such as soil and sandy soil) or specific conditions (such as composting condition, anaerobic digestion condition, and aqueous medium condition), and eventually mineralize into carbon dioxide (CO2) or/and methane (CH4), water (H2O), inorganic salts and new biomass. The degradation process of polymer depends on its physical properties, chemical properties and the degradation environment. There are many standards for biodegradability testing methods, which can be divided into three categories, namely aerobic microbial degradation, anaerobic microbial degradation and other testing methods. Biodegradability testing of plastic products is crucial for market supervision. This paper summarized the existing testing methods, evaluated their advantages and disadvantages, aiming to put forward some new ideas for the research of biodegradable materials under different degradation environments.
Keywords: plastics;microplastic pollution;biodegradable materials;testing;standard
2022, 48(10):16-24,31  收稿日期: 2022-07-05;收到修改稿日期: 2022-09-03
基金项目: 深圳市计量质量检测研究院博士后基金(2020-YA04)
作者简介: 黄开胜(1978-),男,广东梅州市人,教授级高级工程师,硕士,主要从事轻工、化工检测研究
参考文献
[1] 马占峰, 姜宛君, 杨森. 中国塑料加工工业(2019)[J]. 中国塑料, 2020, 34(5): 102-106
[2] JAMBECK J R, GEYER R, WILCOX C, et al. Plastic waste inputs from land into the ocean[J]. Science, 2015, 347(6223): 768-771
[3] Thompson R C, Moore C J, vom Saal F S, et al. Plastics, the environment and human health: current consensus and future trends[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2009, 364(1526): 2153-2166
[4] WANG C H, ZHAO J, XING B S. Environmental source, fate, and toxicity of microplatics[J]. Journal of Hazardous Materials, 2021, 407(124357): 1-17
[5] RUDNIK E. Compostable Polymer Materials[M]. Second Edition. Elsevier, 2019.
[6] PAGGA U. Biodegradability and compostability of polymeric materials in the context of the European packaging regulation[J]. Polym Degrad Stabil, 1998, 59(1): 371-376
[7] LI J J, KIM H R, LEE H M, et al. Rapid biodegradation of polyphenylene sulfide plastic beads by Pseudomonas sp[J]. Science of The Total Environment, 2020, 720(137616): 1-8
[8] KUMAR A G, ANJANA K, HINDUJA M, et al. Review on plastic wastes in marine environment - Biodegradation and biotechnological solutions[J]. Marine Pollution Bulletin, 2020, 150: 110733
[9] RAMESHKUMAR SARANYA, SHAIJU P, O'CONNOR K E, et al. Bio-based and biodegradable polymers - State-of-the-art, challenges and emerging trends[J]. Current Opinion in Green and Sustainable Chemistry, 2020, 21: 75-81
[10] PANG M M, PUN M Y, MOHD I Z A. Degradation studies during water absorption, aerobic biodegradation, and soil burial of biobased thermoplastic starch from agricultural waste/polypropylene blends[J]. Journal of Applied Polymer Science, 2013, 129(6): 3656-3664
[11] BAHRAM K, MUHAMMAD B K N. Thermoplastic starch: a possible biodegradable food packaging material—A review[J]. Journal of Food Process Engineering, 2017, 40(3): e12447
[12] HELANTO K E, MATIKAINEN L, TALJA R, et al. Bio-based polymers for sustainable packaging and biobarriers: A critical review[J]. Ecology, Environment & Conservation, 2019, 14: 4902-4951
[13] NAKAJIMA H, DIJKSTRA P, LOOS K. The recent developments in biobased polymers toward general and engineering applications: polymers that are upgraded from biodegradable polymers, analogous to petroleum-derived polymers, and newly developed[J]. Polymers, 2017, 9: 523
[14] ELVERS D, SONG C H, STEINBÜCHEL A, et al. Technology trends in biodegradable polymers: evidence from patent analysis[J]. Polymer Reviews, 2016, 56: 584-606
[15] FERREIRA F V, CIVIDANES L S, GOUVEIA R F, et al. An overview on properties and applications of poly(butylene adipate-co-terephthalate)-PBAT based composites[J]. Polymer Engineering and Science, 2019, 59(S2): E7-E15
[16] ZUMSTEIN M T, SCHINTLMEISTER A, NELSON T F, et al. Biodegradation of synthetic polymers in soils: Tracking carbon into CO2 and microbial biomass[J]. Science Advances, 2018, 4(7): eaas9024
[17] KIJCHAVENGKUL T, AURAS R, RUBINO M, et al. Biodegradation and hydrolysis rate of aliphatic aromatic polyester[J]. Polymer Degradation and Stability, 2010, 95: 2641-2647
[18] VISAKH T, THOMAS M, VISAKH S P M, et al. Advances innatural polymers: composites and nanocomposites[M]. 1st edition. Heidelberg: Springer, 2013.
[19] SIN L T, RAHMAT A R, RAHMAT W A W A. Polylactic acid: PLA biopolymer technology and applications[M]. 1st edition, Oxford: William Andrew, 2012.
[20] VOLOVA T. Polyhydroxyalkanoates-plastic materials of the 21st century: Production, properties, applications[M]. Hauppauge: Nova Science, 2004.
[21] JIAO J, ZENG X B, HUANG X B. An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)-PBAT[J]. Advanced Industrial and Engineering Polymer Research, 2020, 3(1): 19-26
[22] MENG L H, GAO C C, YU L, et al. Biodegradable composites of poly(butylene succinate-co-butylene adipate) reinforced by poly(lactic acid) fibers[J]. Journal of Applied Polymer Science, 2016, 133(25).
[23] ANN W M, WERNER H D. The return of a forgotten polymer-Polycaprolactone in the 21st century[J]. Progress in Polymer Science, 2010, 35(10): 1217-1256
[24] MOHANTY A K, KHAN M A, HINRICHSEN G. Influence of chemical surface modification on the properties of biodegradable jute fabrics-polyester amide composites[J]. Composites. Part A, Applied Science and Manufacturing, 2000, 31(2): 143-150
[25] FU S J, WEI H M, ZHANG P H. Effect of spinning process on properties of polyglycollide acid embedding materials[J]. Journal of Donghua University (English Edition), 2017, 34(2): 285-287
[26] SUN H R, GU X H, LIU K, et al. Applicability of electrospun polypropylene carbonate polymers as a drug carrier for sirolimus[J]. Molecular Medicine Reports, 2017, 15(6): 4253-4258
[27] WENG Y X, JIN Y J, MENG Q Y, et al. Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions[J]. Polym Test, 2013, 32(5): 918-926
[28] RUDNIK E, BRIASSOULIS D. Comparative Biodegradation in Soil Behaviour of two Biodegradable Polymers Based on Renewable Resources[J]. J Polym Environ, 2011, 19(1): 18-39
[29] 吴佳伦, 罗霜, 李思思, 等. 微波消解/石墨消解-ICP-MS测定土壤中的多种重金属[J]. 中国测试, 2021, 47(5): 58-63
[30] 苏趋, 张小芳, 陈丽鸣, 等. 气相色谱质谱法测定《全国土壤污染状况详查》项目中多环芳烃[J]. 中国测试, 2020, 46(4): 58-64
[31] BRIASSOULIS D, PIKASI A, PAPARDAKI N G, et al. Aerobic biodegradation of bio-based plastics in the seawater/sediment interface (sublittoral) marine environment of the coastal zone–Test method under controlled laboratory conditions[J]. Science of The Total Environment, 2020, 722(137748): 1-12
[32] EUBELER J P, ZOK S, BERNHARD M, et al. Environmental biodegradation of synthetic polymers I. Test methodologies and procedures[J]. Trends Analyt Chem, 2009, 28(9): 1057-1072
[33] WENG Y X, WANG X L, WANG Y Z. Biodegradation behavior of PHAs with different chemical structures under controlled composting conditions[J]. Polym Test, 2011, 30(4): 372-380
[34] COUTO S R, SANROMAN M A. Application of solid-state fermentation to ligninolytic enzyme production[J]. ChemInform, 2005, 36(36): 211-219
[35] WANG M, MA L, KONG Z, et al. Insights on the aerobic biodegradation of agricultural wastes under simulated rapid composting conditions[J]. Journal of Cleaner Production, 2019, 220(5): 688-697
[36] YANG H S, YOON J S, KIM M N. Effects of storage of a mature compost on its potential for biodegradation of plastics[J]. Polym Degrad Stab, 2004, 84(3): 411-417
[37] CLARA M, BELONE L, KOKKO M, et al. Degradation of common polymers in sewage sludge purification process developed for microplastic analysis[J]. Environmental Pollution, 2021, 269(116235): 1-8
[38] WINIOWSKA E. Industrial and municipal sludge[M]. Elsevier, 2019: 181-199.
[39] CHUA A S M, TAKABATAKE H, SATOH H, et al. Production of polyhydroxyalkanoates (PHA) by activated sludge treating municipal wastewater: effect of pH,  sludge retention time (SRT), and acetate concentration in influent[J]. Water Research, 2003, 37(15): 3602-3611
[40] LIU Z G, WANG Y P, HE N, et al. Optimization of polyhydroxybutyrate (PHB) production by excess activated sludge and microbial community analysis[J]. Journal of Hazardous Materialsr, 2011, 185(1): 8-16
[41] LIU T C, GHOSH S. Phase separation during anaerobic fermentation of solid substrates in an innovative plugflow reactor[J]. Water Sci Technol, 1997, 36(6-7): 303-310
[42] 张爱军, 陈洪章, 李佐虎. 有机固体废物固态厌氧消化处理的研究现状与进展[J]. 环境科学研究, 2002, 15(5): 52-54
[43] 李彦磊, 陈复生, 刘昆仑, 等. 可生物降解材料及其评价方法研究进展[J]. 化工新型材料, 2013, 41(3): 8-10
[44] GUNAWAN N R, TESSMAN M, SCHREIMAN A C, et al. Rapid biodegradation of renewable polyurethane foams with identification of associated microorganisms and decomposition products[J]. Bioresource Technology Reports, 2020, 11(100513): 1-9