您好,欢迎来到中国测试科技资讯平台!

首页> 数字期刊群 >本期导读>微小荧光测温探头热响应过程非稳态传热特性分析

微小荧光测温探头热响应过程非稳态传热特性分析

497    2023-04-20

免费

全文售价

作者:陈伟1, 白万栋1, 牛家宏1, 吴锋2, 张雁2

作者单位:1. 四川大学空天科学与工程学院,四川 成都 610065;
2. 中国航发四川燃气涡轮研究院,四川 绵阳 621703


关键词:荧光测温;热响应;非稳态传热;探头结构;流热耦合


摘要:

荧光测温是一种高灵敏度的光致光学测温方法,可用于测量温度动态变化。但荧光涂层低导热率的特点,可能会改变荧光涂覆物体(如测量探头)的非稳态传热特性,进而影响热响应过程的测量精度。针对微小荧光测温探头的热响应过程,该文采用理论分析和数值计算相结合的方法研究探头随主流流体温度变化的非稳态传热特性。研究结果表明,探头荧光涂层的热响应时间不仅受外表面对流换热条件的影响,同时受到探头基座导热热阻的影响。涂层温度达到稳定状态需要基座也基本达到稳定状态。当采用高导热材料时,探头内部基座的热响应速率随荧光涂层厚度的变化不明显。


The transient heat transfer characteristics analysis of the thermal response in a mini probe covered with fluorescent coating
CHEN Wei1, BAI Wandong1, NIU Jiahong1, WU Feng2, ZHANG Yan2
1. School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China;
2. Aero Engine Corporation of China, Sichuan Gas Turbine Establishment, Mianyang 621703, China
Abstract: Fluorescence is a highly sensitive photoluminescence optical temperature measurement method, that can be used to measure the temperature dynamic change. However, the low thermal conductivity of the fluorescent coating may change the transient heat transfer characteristics of the fluorescent coated object (such as the probe), thereby affecting the measurement accuracy of the thermal response process. In order to analysis the thermal response process of the mini probe covered with the fluorescent coating, this paper uses a combination of theoretical analysis and numerical calculation to study the transient heat transfer characteristics of the probe in a mainstream field with temperature changes. It is showed that, the thermal response time of the fluorescent coating and the mini probe is not only affected by the convective heat transfer characteristics of the outer surface, but also affected by the thermal resistance of the probe base. Before the coating temperature reaches a stable state, the base must basically reach a stable state. If the probe base is the high thermal conductivity material, the thermal response rate does not change significantly with the thickness of the fluorescent coating.
Keywords: fluorescence temperature measurement;thermal response;unsteady heat transfer;probe structure;conjugate heat transfer
2023, 49(2):153-158  收稿日期: 2021-05-27;收到修改稿日期: 2021-08-28
基金项目: 国家自然科学基金(52076143);四川省高新技术领域重点研发项目(2020YFG0194)
作者简介: 陈伟(1984-),男,湖南长沙市人,副研究员,博士,研究方向为叶轮机械气动热力学、非接触测量技术等
参考文献
[1] 张塘卫. 航空发动机试验过渡态测试系统设计及应用[J]. 电子测试, 2016, 15: 21-23
[2] ATKINS N R, MILLER R J, AINSWORTH R W. Performance measurements in a transient turbine test facility-preliminary instrumentation development[C]// The 16th Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines, 2002.
[3] 丁水汀, 丁凯, 邱天. 基于双热电偶的瞬态流体温度测试方法研究[J]. 中国测试, 2017, 43(9): 1-7
[4] GILAD A, CARLA B, ALEXANDER J S, et al. Dynamic calibration and modeling of a cold wire for temperature measurement[J]. Measurement Science and Technology, 2013, 24: 1-11
[5] 魏可臻, 张奇. 热电偶热传导测温中的动态响应时间和误差估计[J]. 测试技术学报, 2007, 21(6): 523-526
[6] 王德兵, 黄进. 温度传感器响应时间测试[J]. 计测技术, 2016, 36: 95-97
[7] JI Z L, DUAN F L, XIE Z Y. Transient measurement of temperature distribution using thin film thermocouple array on turbine blade surface[J]. IEEE Sensors Journal, 2021, 21(1): 207-212
[8] 刘波, 王崇愿, 朱鹏飞. 水流环境下温度传感器动态响应测量的不确定度评定[J]. 计量学报, 2020, 41(10): 1240-1244
[9] 陈文静, 伍贤学, 吴云英, 等. 微波绿色合成N, S共掺杂碳点及其在Fe3+检测和温度传感方面的应用[J]. 中国测试, 2021, 47(3): 64-69
[10] 周江宁, 殷一民, 郭秋亭, 等. 基于激光诱导荧光的高速飞行粒子低温段测温方法[J]. 航空动力学报, 2019, 34(12): 2642-2647
[11] 严浩, 张少华, 王方仪, 等. NO激光诱导荧光对高焓气流温度的测量[J]. 气体物理, 2020, 5(2): 1-7
[12] 李心悦, 周少帅, 姜桂铖, 等. 基于发光材料的温度探测新机制探索[J]. 中国稀土学报, 2016, 34(6): 675-684
[13] 杨和平, 朱杨凯, 周正超, 等. 荧光衰减型光纤测温[J]. 传感器世界, 2019, 25(5): 7-13
[14] BRÜBACH J, PFLITSCH C, DREIZLER A, et al. On surface temperature measurements with thermographic phosphors: a review[J]. Progress in Energy and Combustion Science, 2013, 39: 37-60
[15] AN N, YE L, BAO R J, et al. Up-conversion luminescence characteristics and temperature sensing of Y2O3: Ho3+/Yb3+ single crystal fiber[J]. Journal of Luminescence, 2019, 215: 116657