登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于MEMS传感器的高精度姿态角测量研究

基于MEMS传感器的高精度姿态角测量研究

4552    2017-03-09

¥0.50

全文售价

作者:刘震, 王雪梅, 倪文波

作者单位:西南交通大学机械工程学院, 四川 成都 610031


关键词:姿态解算;运动加速度;互补滤波;卡尔曼滤波;MEMS传感器


摘要:

针对传统姿态参考系统姿态解算容易受到载体运动加速度的干扰,导致系统精度变低、稳定性变差等问题,提出一种改进的卡尔曼滤波算法。该算法建立基于四元数的惯性系统姿态解算数学模型,并根据载体运动加速度的大小,适时调整卡尔曼滤波器的量测噪声方差的大小,以此减弱卡尔曼滤波过程中运动加速度对姿态角解算精度的影响。采用MEMS三轴陀螺仪、加速度计和磁阻传感器完成载体在电梯升降过程中的测量,对实验测量数据进行姿态解算,结果表明改进后的卡尔曼滤波算法能够有效减小运动加速度对姿态解算的影响,姿态角的均方根误差相对于传统的姿态参考系统降低约40%。


Research on attitude angle measurement with high precision based on MEMS sensors

LIU Zhen, WANG Xuemei, NI Wenbo

School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China

Abstract: Since the conventional attitude and heading reference system are vulnerable to the interference of motion acceleration, an improved Kalman filter algorithm was proposed in the paper. Quaternion attitude mathematical model based on inertial system was built up. The improved Kalman filter algorithm can reduce the impact of motion acceleration on attitude algorithm in the process of Kalman filter by timely adjusting the observation noise variance according to the motion acceleration of vehicle. The experimental data were measured by MEMS three-axis gyroscope, accelerometer and magnetoresistive sensors during riding up and down in the elevator. The results demonstrate that the improved Kalman filter algorithm can significantly reduce the impact of motion acceleration on attitude estimation. And compared to traditional attitude and heading reference system, attitude RMSE with improved Kalman filter algorithm has decreased by 40%.

Keywords: attitude estimation;motion acceleration;complementary filtering;Kalman filter;MEMS sensor

2017, 43(2): 6-12  收稿日期: 2016-06-12;收到修改稿日期: 2016-07-22

基金项目: 

作者简介: 刘震(1990-),男,陕西西安市人,硕士研究生,专业方向为测控技术及应用。

参考文献

[1] 吕印新,肖前贵,胡寿松. 基于四元数互补滤波的无人机姿态解算[J]. 燕山大学学报,2014(2):175-180.
[2] 万良金. 基于多传感器信息融合的机器人姿态测量技术研究[D]. 北京:北京交通大学,2015.
[3] 杜波,刘奭昕. 人体姿态检测装置的设计[J]. 长春工程学院学报(自然科学版),2012,13(4):105-107.
[4] 陈曦. 基于MEMS惯性传感器的高精度姿态测量关键技术研究[D]. 杭州:浙江大学,2014.
[5] 陈旭光,杨平,陈意. MEMS陀螺仪零位误差分析与处理[J].传感技术学报,2012,25(5):628-632.
[6] 米刚,田增山,金悦,等. 基于MIMU和磁力计的姿态更新算法研究[J]. 传感技术学报,2015(1):43-48.
[7] 张秋阳. 无人机姿态测算及其误差补偿研究[D]. 长沙:中南大学,2011.
[8] 卢志才,高敏,贾春宁. 基于地磁测量的火箭弹滚转角解算误差补偿方法研究[J]. 中国测试,2014,40(2):9-12.
[9] VASCONCELOS J F, CARDEIRA B, SILVESTRE C, et al. Discrete-time complementary filters for attitude and position estimation: design, analysis and experimental validation[J]. IEEE Transactions on Control Systems Technology,2011,19(1):181-198.
[10] BRIGANTE C M N, ABBATE N, BASILE A, et al. Towards miniaturization of a MEMS-based wearable motion capture system[J]. IEEE Transactions on Industrial Electronics,2011,58(8):3234-3241.
[11] GAO C, ZHAO G, LU J. In-flight misalignment attitude estimation for UAV based on GPS and UKF/MPF filter[C]//Guidance, Navigation and Control Conference (CGNCC), 2014 IEEE Chinese. IEEE,2015:452-457.
[12] 秦永元. 惯性导航[M]. 2版. 北京:科学出版社,2014:130-136.
[13] 陈亮. 基于对偶四元数的捷联惯性导航算法[D]. 哈尔滨:哈尔滨工业大学,2011.
[14] 王励扬,翟昆朋,何文涛,等. 四阶龙格库塔算法在捷联惯性导航中的应用[J]. 计算机仿真,2014,31(11):56-59.
[15] 徐昺. 基于MEMS传感器与ZigBee网络的人体动作捕捉系统的设计与实现[D]. 成都:电子科技大学,2013.
[16] 郭晓鸿,杨忠,陈喆,等. EKF和互补滤波器在飞行姿态确定中的应用[J]. 传感器与微系统,2011,30(11):149-152.