您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>太阳能电池阻抗谱测量方法及其应用进展

太阳能电池阻抗谱测量方法及其应用进展

281    2024-02-01

免费

全文售价

作者:李傲1, 肖文波1, 张濬哲2, 吴华明1, 王树鹏3

作者单位:1. 南昌航空大学 无损检测技术教育部重点实验室,江西 南昌 330063;
2. 南昌航空大学材料科学与工程学院,江西 南昌 330063;
3. 中国航发沈阳黎明航空发动机有限责任公司,辽宁 沈阳 110043


关键词:太阳能电池;阻抗谱;故障评估;电子输运;界面研究


摘要:

阻抗谱测量技术是研究太阳能电池的重要手段。该文首先对近几年提出的阻抗谱测量方法进行评述,分析各类方法的优缺点。通过对阻抗谱测量方法的研究,发现不同测量方法之间的差异主要体现在其效率、精度以及成本等方面。其次,分析阻抗谱在太阳电池故障检测、电子输运、界面研究等方面的应用情况,指出它们评价电池动态行为时存在的不足之处。最后,总结阻抗谱测量方法未来发展方向及应用需求。


Research progress of solar cell impedance spectroscopy measurement method and its application
LI Ao1, XIAO Wenbo1, ZHANG Junzhe2, WU Huaming1, WANG Shupeng3
1. Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China;
2. Material Science and Engineering Institute, Nanchang Hangkong University, Nanchang 330063, China;
3. AECC Shenyang Liming Aero-Engine Co., Ltd., Shenyang 110043, China
Abstract: Impedance spectroscopy is an important means of studying solar cells. Firstly, this paper reviews the impedance spectroscopy measurement methods proposed in recent years, and analyzes the advantages and disadvantages of each method. Through the study of impedance spectroscopy measurement methods, it is found that the differences between different measurement methods are mainly reflected in their efficiency, accuracy and cost. Secondly, the application of impedance spectroscopy in fault detection, electron transport, and interface research are analyzed, and their shortcomings in evaluating the dynamic behavior of cells are pointed out. Finally, the future development direction and application requirements of impedance spectroscopy measurement methods are summarized and analyzed.
Keywords: solar cells;impedance spectrum;failure assessment;electron transport;interface research
2024, 50(1):1-8  收稿日期: 2022-08-11;收到修改稿日期: 2022-10-05
基金项目: 国家自然科学基金(12064027,62065014);研究生创新专项资金(YC2022-118,YC2022-113)
作者简介: 李傲(1999-),男,河北保定市人,硕士研究生,专业方向为光伏检测技术。
参考文献
[1] 雷剑鹏, 肖文波, 吴华明, 等. 基于数据采集卡及电子负载的太阳能电池伏安特性测试系统[J/OL]. 中国测试: 1-7[2022-08-11]. http://kns.cnki.net/kcms/detail/51.1714.TB.20220623.1424.022.html.
LEI J P, XIAO W B, WU H M, et al. Current-voltage test system of solar cell based on data acquisition card and electronic load[J/OL]. China Measurement & Test,1-7[2022-08-11]. http://kns.cnki.net/kcms/detail/51.1714.TB.20220623.1424.022.html.
[2] 陈琨, 王栋杰, 张坚, 等. 醋酸甲胺对钙钛矿太阳能电池性能的影响 [J]. 电池, 2022, 52 (3): 272-276.
CHEN K, WANG D J, ZHANG J, et al. Effects of methylammonium acetate to the performance of mesoscopic perovskite solar cell[J]. Battery Bimonthly, 2022, 52 (3): 272-276.
[3] ZHOU H, ZHANG Y, YANG L, et al. Short-term photovoltaic power forecasting based on long short term memory neural network and attention mechanism[J]. Ieee Access, 2019, 7: 78063-78074.
[4] 郑伟烁, 郑文悦, 李志伟, 等. 光伏电站在线监测技术现状与进步趋势展望[J]. 电测与仪表, 2021, 58(9): 1-7.
ZHENG W S, ZHENG W Y, LI Z W, et al. Status and outlook of online monitoring technologies for photovoltaic power stations[J]. Electrical Measurement & Instrumentation, 2021, 58(9): 1-7.
[5] KUIPERS M, SCHRÖER P, NEMETH T, et al. An algorithm for an online electrochemical impedance spectroscopy and battery parameter estimation: Development, verification and validation[J]. Journal of Energy Storage, 2020, 30: 101517.
[6] VON HAUFF E. Impedance spectroscopy for emerging photovoltaics[J]. The Journal of Physical Chemistry C, 2019, 123(18): 11329-11346.
[7] 黄文波, 庞小雷, 刘力千, 等. 交流阻抗谱技术研究有机薄膜太阳电池[J]. 实验技术与管理, 2019, 36(2): 58-61, 107.
HUANG W B, PANG X L, LIU L Q, et al. Study of organic thin film solar cell by AC impedance spectroscopy[J]. Experimental Technology and Management, 2019, 36(2): 58-61, 107.
[8] DE BEER D J, JOUBERT T H. Undersampling and saturation for impedance spectroscopy performance[J]. IEEE Sensors Journal, 2021, 21(20): 23382-23389.
[9] BONANOS N, STEELE B, BUTLER E, et al. Applications of impedance spectroscopy[J]. Impedance Spectroscopy: Theory, Experiment, and Applications, 2018: 175-478.
[10] 吴磊, 吕桃林, 陈启忠, 等. 电化学阻抗谱测量与应用研究综述[J]. 电源技术, 2021, 45(9): 1227-1230.
WU L, LV T L,CHEN Q Z, et al. Review of measurement and application of electrochemical impedance spectroscopy[J]. Chinese Journal of Power Sources, 2021, 45(9): 1227-1230.
[11] SIHVO J, STROE D I, MESSO T, et al. Fast approach for battery impedance identification using pseudo-random sequence signals[J]. IEEE transactions on power electronics, 2019, 35(3): 2548-2557.
[12] IVANISEVIC N, RODRIGUEZ S, RUSU A. Impedance spectroscopy based on linear system identification[J]. IEEE transactions on biomedical circuits and systems, 2019, 13(2): 396-402.
[13] YADAV P, PANDEY K, BHATT V, et al. Critical aspects of impedance spectroscopy in silicon solar cell characterization: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 1562-1578.
[14] LI M, NIAN H, HU B, et al. Adaptive frequency adjustment method for impedance measurement[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 10: 518-531.
[15] PARK S M, YOO J S. Peer reviewed: electrochemical impedance spectroscopy for better electrochemical measurements[J]. Journal of American Chemical Society, 2003, 75: 455-61.
[16] LI M, NIAN H, HU B, et al. An improved impedance measurement method based on multi-sine signal considering the suppression of noise interference[J]. IEEE Access, 2021, 9: 34221-34230.
[17] SUBHAN S, HA S. A harmonic error cancellation method for accurate clock-based electrochemical impedance spectroscopy[J]. IEEE transactions on biomedical circuits and systems, 2019, 13(4): 710-724.
[18] 扈蓓蓓, 吴康, 金海彬, 等. 基于自动平衡电桥的LCR阻抗测量仪设计[J]. 计量学报, 2019, 40(S1): 111-115.
HU B B, WU K, JIN H B, et al. Design of LCR meter based on self-balancing bridge[J]. ACTA METROLOGICA SINICA, 2019, 40(S1): 111-115.
[19] SUN S, XU L, CAO Z, et al. A high-speed electrical impedance measurement circuit based on information-filtering demodulation[J]. Measurement Science and Technology, 2014, 25(7): 075010.
[20] WANG X, ZHAO H, WANG A, et al. A portable impedance spectroscopy measurement method through adaptive reference resistance[J]. IEEE Access, 2021, 9: 88011-88018.
[21] 洪潭. 基于阻抗匹配的阻抗谱测量方法研究[D]. 武汉: 湖北工业大学, 2019.
HONG T. Research on impedance spectrum measurementmethod based on impedance matching [D]. Wuhan: Hubei University of Technology, 2019.
[22] COTFAS P A, COTFAS D T, SPATARU S. Study of photovoltaic cell degradation under rapid light variation[C]//2020 5th International Conference on Smart and Sustainable Technologies (SpliTech), 2020: 1-5.
[23] 苏都, 梁鹏, 韩培德. 太阳电池阻抗测量系统设计[J]. 内蒙古大学学报(自然科学版), 2020, 51(2): 196-201.
SU D, LIANG P, HAN P D. Solar cell impedance measurement system design[J]. Journal of Inner Mongolia University (Natural Science Edition), 2020, 51(2): 196-201.
[24] 沈毅鸿, 张元良. 基于AD8302的阻抗谱自动测量系统设计[J]. 中国测试, 2018, 44(9): 90-95.
SHEN Y H, ZHANG Y L. Design of an automatic impedance spectrum measuring system based on AD8302[J]. China Measurement & Test, 2018, 44(9): 90-95.
[25] 修嘉芸, 谷玉海, 徐小力. 高精度矢量阻抗测量仪的研究与设计[J]. 仪表技术与传感器, 2021(9): 18-22.
XIU J Y, GU Y H, XU X L. Research and design of high precision vector impedance measuring instrument[J]. Instrument Technique and Sensor, 2021(9): 18-22.
[26] 储开斌, 江楠, 朱栋. 基于自动平衡电桥的便携式阻抗测量仪设计[J]. 常州大学学报(自然科学版), 2020, 32(6): 69-75.
CHU K B, JIANG N, ZHU D. A portable apparatus for measuring impedance based on the automatic balance bridge[J]. Journal of Changzhou University (Natural Science Edition), 2020, 32(6): 69-75.
[27] LYU C, LIU H, LUO W, et al. A fast time domain measuring technique of electrochemical impedance spectroscopy based on FFT[C]//2018 Prognostics and System Health Management Conference (PHM-Chongqing), 2018: 450-455.
[28] 袁小平, 胡秀娟, 孙英洲, 等. 基于加窗傅里叶变换的弱电网阻抗测量算法[J]. 电力系统保护与控制, 2018, 46(10): 96-101.
YUAN X P, HU X J, SUN Y Z, et al. A weak grid impedance detection method based on windowed Fourier transformation[J]. Power System Protection and Control, 2018, 46(10): 96-101.
[29] 韩晓丽. 锂离子电池电化学阻抗谱测量方法的研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
HAN X L. Researchon measurement methods of electrochemical impedance spectroscopy of lithiumion battery[D]. Harbin: Harbin Institute of Technology, 2011.
[30] WINSTON D P, MURUGAN M S, ELAVARASAN R M, et al. Solar PV’s micro crack and hotspots detection technique using NN and SVM[J]. IEEE Access, 2021, 9: 127259-127269.
[31] OZAKI M, ISHIKURA Y, TRUONG M A, et al. Iodine-rich mixed composition perovskites optimised for tin (iv) oxide transport layers: The influence of halide ion ratio, annealing time, and ambient air aging on solar cell performance[J]. Journal of Materials Chemistry A, 2019, 7(28): 16947-16953.
[32] SHARMA D K, PAREEK K, CHOWDHURY A. Investigation of solar cell degradation using electrochemical impedance spectroscopy[J]. International Journal of Energy Research, 2020, 44(11): 8730-8739.
[33] KATAYAMA N, OSAWA S, MATSUMOTO S, et al. Degradation and fault diagnosis of photovoltaic cells using impedance spectroscopy[J]. Solar Energy Materials and Solar Cells, 2019, 194: 130-136.
[34] BISQUERT J, MORA-SERO I, FABREGAT-SANTIAGO F. Diffusion-recombination impedance model for solar cells with disorder and nonlinear recombination[J]. ChemElectroChem, 2014, 1(1): 289-296.
[35] 潘武淳, 王磊, 张深, 等. 钙钛矿太阳电池载流子传输-复合模型研究[J]. 太阳能学报, 2019, 40(1): 68-72.
PAN W C, WANG L, ZHANG S, et al. Carrier transport-complex modeling of chalcocite solar cells[J]. Acta Energiae Solaris Sinica, 2019, 40(1): 68-72.
[36] OMAR A, ALI M S, ABD RAHIM N. Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: A review[J]. Solar Energy, 2020, 207: 1088-1121.
[37] CONTRERAS-BERNAL L, RAMOS-TERRÓN S, RIQUELME A, et al. Impedance analysis of perovskite solar cells: a case study[J]. Journal of Materials Chemistry A, 2019, 7(19): 12191-12200.
[38] 何比祖. 新型界面材料的设计合成及其在钙钛矿太阳能电池中的应用[D]. 重庆: 西南大学, 2020.
HE B Z. Design and synthesis of new interfacial material for perovskite solar cells[D]. Chongqing: Southwest University, 2020.
[39] LI Z, MERCADO C C, YANG M, et al. Electrochemical impedance analysis of perovskite–electrolyte interfaces[J]. Chemical Communications, 2017, 53(16): 2467-2470.