您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>热反射率校准系数与温度的相关性研究

热反射率校准系数与温度的相关性研究

968    2023-08-21

免费

全文售价

作者:翟玉卫, 丁晨, 李灏, 荆晓冬, 刘岩, 吴爱华

作者单位:中国电子科技集团公司第十三研究所,河北 石家庄 050051


关键词:光热反射热成像;环境温度;热反射率校准系数;非线性


摘要:

为验证热反射热成像测温中温度对热反射率校准系数(CTR)的影响,采用一套热反射热成像测温装置在较宽的温度范围内对由硅衬底和金组成的被测件进行两种空气热对流条件下的测试。热反射热成像测温装置采用530 nm波长LED作为光源;在20~90 ℃范围内以10 ℃为间隔分别测量被测件表面金和硅的CTR;采用一个小风扇改变空气热对流。发现空气热对流较强时, CTR在高温段快速减小;空气热对流较弱时,CTR在高温段减小速度放缓,认为主要原因是较强的空气热对流会导致测温装置镜头受热而引起测温装置读数降低。试验结果证明,来自测温装置控温平台的较高温度会引起CTR测量结果偏低。


Study on temperature dependence of thermoreflectance calibration coefficient
ZHAI Yuwei, DING Chen, LI Hao, JING Xiaodong, LIU Yan, WU Aihua
The 13th Research Institute, CETC, Shijiazhuang 050051, China
Abstract: In order to verify the influence of temperature on thermoreflectance calibration coefficient (CTR), a thermoreflectance thermography setup was used to test a DUT consisting of Si substrate and Au under two kinds of air thermal convention conditions. A 530 nm wavelength LED was used as the light source of the thermoreflectance thermography setup; the CTR of Si and Au was measured between 20-90 ℃ in steps of 10 ℃, respectively; a little fan was used to change the air thermal convention. It was revealed that CTR reduced rapidly under higher temperature conditions when the air thermal convention is strong; when the air thermal convention is suppressed, the downward trend of CTRwas slowing down , the reason were due to that the strong air thermal convention would heating the lens and cause the reduce of counts of the measurement setup. The results show that the high temperature from experiment setup itself would cause lower CTR measurement results.
Keywords: thermoreflectance thermography;ambient temperature;thermoreflectance calibration coefficient;nonlinearity
2023, 49(8):21-27  收稿日期: 2021-08-31;收到修改稿日期: 2021-12-09
基金项目:
作者简介: 翟玉卫(1983-),男,河北晋州市人,高级工程师,硕士,主要从事半导体器件热可靠性检测与分析方面的研究工作
参考文献
[1] MAIZE K, PAVLIDIS G, HELLER E, et al. High resolution and thermal characterization and simulation of power AlGaN/GaN HEMT using micro-Raman thermography and 800 picosecond transient thermoreflectance imaging [C]//Proceedings of Compound Semiconductor Integrated Circuit Symposium, 2014: 1- 8.
[2] 翟玉卫, 梁法国, 郑世棋, 等. 用热反射测温技术测量GaN HEMT的瞬态温度[J]. 半导体技术, 2016, 41(1): 76-80
[3] PAVLIDIS G, KENDIG D, YATES L, et al. Improving the transient thermal characterization of GaN HEMTs [C]// Proceedings of 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2018: 208-213.
[4] KENDIG D, PAVKUDIS G, GRAHAM S, et al. UV thermal imaging of RF GaN devices with GaN resistor validation [C]// Proceedings of 91th ARFTG Microwave Measurement Conference, 2018: 1-4.
[5] BACKOWSKI L, JACQUET J C, JARDEL O, et al. Thermal characterization using optical methods of AlGaN/GaN HEMTs on SiC substrate in RF operating conditions[J]. IEEE Trans. Electron Devices, 2015, 62(12): 3992-3998
[6] BHOJANI R, KOWALSKY J, LUTZ J, et al. Observation of current filaments in IGBTs with thermoreflectance microscopy[C]// Proceedings of the 30th International Symposium on Power Semiconductor Devices & ICs. 2018: 164- 167.
[7] TADJER M, RAAD P, KOMAROV P, et al. Electro-thermal evaluation of AlGaN/GaNMembrane high electron mobility transistors by transient thermoreflectance[J]. Journal of the Electron Devices Society, 2018, 6: 922-930
[8] URBONAS J, MATEI C, AAEN P H. Transient and steady-state thermal measurements of GaN-on-SiC HEMT transistors under realistic microwave drive [C]// Proceedings of 92nd ARFTG Microwave Measurement Conference, 2019: 1-4.
[9] 翟玉卫, 刘岩, 李灏, 等. 用热反射热成像测量GaN HEMT稳态温度[J]. 中国测试, 2021, 41(5): 558-562
[10] WANG D B, LIU ZH M, ZHENG L B, et al. A High-resolution thermoreflectance imagingTechnique based on visible light[C]// Proceedings of the 2019 20th International Conference on Electronic Packaging Technology, 2019: 1-5.
[11] HELOU A E, RAAD P E, KOMAROV P, et al. Temperature dependence of the thermoreflectance coefficient of gold by the use of a phase-locked single-point measurement approach[C]// Proceedings of the 2018 34th Thermal Measurement, Modeling & Management Symposium, 2018: 161-164.
[12] SHAKOURI A, ZIABARI A, KENDIG D, et al. Stable thermoreflectance thermal imaging microscopy with piezoelectric position control[C]// Proceedings of the 32nd Semi-Therm symposium, 2016: 128-132.
[13] BURZO M G, KOMAROV P L, RAADP E. Pixel-by-Pixel calibration of a CCD camera based thermoreflectance thermography system with nanometer resolution[C]// Proceedings of the 2009 15th International Workshop on Thermal Investigations of ICs and Systems, 2009: 130-135.
[14] Brocero G, Sipma J P, Eudeline P, et al. Determination of AlGaN/GaN power transistor junction temperature for radar applications [C]// Proceedings of 21st International Conference on Microwave, Radar and Wireless Communications (MIKON), 2016: 1-5.
[15] 翟玉卫, 刘岩, 李灏, 等. 用光热反射热成像测量GaN HEMT稳态温度[J]. 中国测试, 2021, 47(10): 41-45