您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于柱平面压入的洛氏硬度预测模型

基于柱平面压入的洛氏硬度预测模型

1092    2023-03-23

免费

全文售价

作者:肖怀荣1, 吉昌兵2,3, 蔡力勋1, 刘晓坤1

作者单位:1. 西南交通大学力学与航空航天学院 应用力学与结构安全四川省重点实验室,四川 成都 610031;
2. 长寿命高温材料国家重点实验室,四川 德阳 618000;
3. 东方汽轮机有限公司,四川 德阳 618000


关键词:延性金属;柱平面压入;洛氏硬度;应力-应变曲线


摘要:

在役结构材料的拉伸力学性能可通过压入试验获得,但针对材料硬度的压入试验获取方法仍需进一步发展。基于柱平面压入试验方法和锥压入载荷-位移模型,建立柱平面压入的材料洛氏硬度预测模型,并针对8种延性金属材料完成洛氏硬度模型预测值与传统测试结果之间的比对。结果表明,由柱平面压入洛氏硬度预测模型得到的结果与传统洛氏硬度测试结果吻合良好,两者之间的误差均在10%以内,新模型提高柱平面压入对材料性能指标的预测能力。


Rockwell hardness prediction model based on the cylindrical flat indentation
XIAO Huairong1, JI Changbing2,3, CAI Lixun1, LIU Xiaokun1
1. Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu 610031,China;
2. State Key Laboratory of Long-life High-temperature Materials, Deyang 618000, China;
3. Dongfang Turbine Co., Ltd ., Deyang 618000, China
Abstract: The tensile mechanical properties of in-service structural materials can be obtained by indentation test, the prediction method for material hardness through indentation test still needs further development. Based on the cylindrical flat indentation test method and the load vs. displacement model of cone indentation, a Rockwell hardness prediction model under cylindrical flat indentation is established. The comparison between the prediction results obtained by new model and the traditional test results was completed for eight ductile metals, and the error are all less than 10%. The new model improves the predictive power of cylindrical flat indentation for material properties.
Keywords: ductile metals;cylindrical flat indentation;Rockwell hardness;stress-strain curve
2023, 49(3):8-12  收稿日期: 2022-07-05;收到修改稿日期: 2022-11-01
基金项目: 国家自然科学基金(11872320)
作者简介: 肖怀荣(1997-),男,甘肃永靖县人,博士研究生,研究方向为材料测试理论与技术研究
参考文献
[1] LEE Y, KWON D. Estimation of biaxial surface stress by instrumented indentation with sharp indenters[J]. Acta Materialia, 2004, 52(6): 1555-1563
[2] BYUN T S, HONG J H, HAGGAG F M, et al. Measurement of through-the-thickness variations of mechanical properties in SA508 Gr. 3 pressure vessel steels using ball indentation test technique[J]. International Journal of Pressure Vessels and Piping, 1997, 74(3): 231-238
[3] AHN J, KWON D. Derivation of plastic stress–strain relationship from ball indentations: Examination of strain definition and pileup effect[J]. Journal of Materials Research, 2001, 16(11): 3170-3178
[4] HAGGAG F M. In-situ measurements of mechanical-properties using novel automated ball indentation system: small specimen test techniques applied to nuclear reactor vessel thermal annealing and plant life extension[C]//ASTM International, 1993.
[5] CHEN H, CAI L X, BAO C. A novel model for determining tensile properties and hardness of steels by spherical indentations[J]. Strain, 2020(5): 12365
[6] 金属材料压入试验、强度、硬度和应力-应变曲线的测定:GB/T 37782—2019 [S]. 北京:中国质检出版社, 2019.
[7] CHEN H, CAI L X. Theoretical model for predicting uniaxial stress-strain relation by dual conical indentation based on equivalent energy principle[J]. Acta Materialia, 2016, 121: 181-189
[8] 陈辉, 蔡力勋, 彭晖. 预测铝合金单轴力学性能的复合型双锥压入法[J]. 机械工程学报, 2021, 57(20): 79-88
[9] LIU X K, CAI L X, CHEN H, et al. Semi-analytical model for flat indentation of metal materials and its applications[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3266-3277
[10] MIDAWI A R H, SIMHA C H M, GERLICH A P. Novel techniques for estimating yield strength from loads measured using nearly-flat instrumented indenters[J]. Materials Science and Engineering:A, 2016, 675: 449-453
[11] HU Z, LYNNE K, DELFANIAN F. Characterization of materials' elasticity and yield strength through micro-/nano-indentation testing with a cylindrical flat-tip indenter[J]. Journal of Materials Research, 2015, 30(4): 578-591
[12] CHEN H, CAI L X. Unified elastoplastic model based on a strain energy equivalence principle[J]. Applied Mathematical Modelling, 2017, 52: 664-671
[13] CHEN H, CAI L X, BAO C. Equivalent-energy indentation method to predict the tensile properties of light alloys[J]. Materials & Design, 2019, 162: 322-330
[14] 金属材料 洛氏硬度试验 第1部分 试验方法:GB/T 230.1-2018 [S]. 北京:中国质检出版社,2018.
[15] 金属材料 拉伸试验 第1部分: 室温试验方法:GB/T 228.1—2021 [S]. 北京:中国质检出版社,2021.
[16] HUI L J, GUO L F, KAI M X, et al. A strain-dependent ductile damage model and its application in the derivation of fracture toughness by micro-indentation[J]. Materials & Design, 2015, 67: 623-630