您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>一发三收式桩基声波透射检测技术及数值模拟分析

一发三收式桩基声波透射检测技术及数值模拟分析

1271    2023-01-12

免费

全文售价

作者:王奎华1,2, 于喆1,2, 项驰轩1,2, 吴君涛1,2, 邱欣晨1,2

作者单位:1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058;
2. 浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058


关键词:桩基础;无损测试;声波透射法;测管弯斜;有限元分析


摘要:

桩基声测管倾斜会使得桩身混凝土超声波波速计算结果出现误差,影响桩身质量检测结果,为此提出一种一发三收式声波透射检测技术。该技术通过固定各声波接收换能器的间距,根据几何关系,使用检测得到的超声波声时和接收换能器的间距,即可计算得到桩身混凝土超声波波速,使其不再依赖于超声波发射端和接收端的间距,也不再需要拟合声测管管身曲线。通过有限元软件模拟接收换能器间距和声测管倾斜程度对检测结果精度的影响,结果表明该技术可以良好地适应超声波接收换能器间距和声测管倾斜斜率的变化,稳定保持较高的波速计算精度,解决声测管倾斜、偏位时造成的声速计算误差。


One-launcher-three-receiver sonic logging technique for pile foundation and its numerical simulation analysis
WANG Kuihua1,2, YU Zhe1,2, XIANG Chixuan1,2, WU Juntao1,2, QIU Xinchen1,2
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China;
2. Key Laboratory of Soft Soils and Geoenvironmental Engineering of Ministry of Education, Zhejiang University, Hangzhou 310058, China
Abstract: The incline of pile foundation acoustic tube will cause errors of calculation result of ultrasonic wave velocity of pile concrete, which will affect the test result of pile quality, therefore we proposed a one-launcher-three-receiver sonic logging technique. In this technique, the ultrasonic wave velocity of pile concrete can be calculated by fixing the spacing of each acoustic wave receiving transducer and using the measured ultrasonic sound time and the spacing values of the receiving transducers according to the geometric relationship, so that it will no longer be relied on the spacing values between the ultrasonic transmitting end and the receiving end, or fitting the acoustic tube body curve. Using finite element software to simulate the influence the receiving transducer spacing and the acoustic tube inclination on the accuracy of the testing results, shows that the technique can well adapt to the change of the ultrasonic transducer spacing and acoustic tube inclination, and stably maintain high accuracy of wave velocity calculation, and solve the sound velocity calculation error caused by the inclination and deviation of the acoustic tube.
Keywords: pile foundation;non-destructive test;sonic logging method;bent acoustic pipe;FEA
2023, 49(1):1-6  收稿日期: 2022-01-12;收到修改稿日期: 2022-03-21
基金项目: 浙江省自然科学基金资助项目(LXZ22E080001);国家自然科学基金资助项目(51779217, 52178358, 52108349); 中央高校基本科研业务费专项资金资助(2020QNA4027)
作者简介: 王奎华(1965-),男,江苏滨海市人,教授,博导,从事桩基振动理论及土工测试方法的研究
参考文献
[1] 吴文兵, 邓国栋, 张家生, 等. 考虑横向惯性效应时桩侧土-管桩-土塞纵向耦合振动特性研究[J]. 岩土力学, 2017, 38(4): 993-1002
[2] WANG K H, WU W, ZHANG Z, et al. Vertical dynamic response of an inhomogeneous viscoelastic pile[J]. Computers and Geotechnics, 2010, 37(4): 536-544
[3] WU J T, NAGGAR M H E, WANG K H, et al. Lateral vibration characteristics of an extended pile shaft under low-strain integrity test[J]. Soil Dynamics and Earthquake Engineering, 2019, 126: 105812
[4] WU J T, NAGGAR M H E, WANG K H, et al. Analytical study of employing low-strain lateral pile integrity test on a defective extended pile shaft[J]. Journal of Engineering Mechanics, 2020, 146(9): 04020103
[5] LIU X, NAGGAR M H E, WANG K H, et al. Three-dimensional axisymmetric analysis of pile vertical vibration[J]. Journal of Sound and Vibration, 2021, 494: 115881
[6] 吴君涛, 王奎华, 刘鑫, 等. 缺陷桩周围成层土振动响应解析解及其在旁孔透射波法中的应用[J]. 岩石力学与工程学报, 2019, 38(1): 203-216
[7] WU J T, WANG K H, NAGGAR M H E, et al. Dynamic soil reactions around pile-fictitious soil pile coupled model and its application in parallel seismic method[J]. Computers and Geotechnics, 2019, 110: 44-56
[8] WU J T, WANG K H, NAGGAR M H E, et al. Half-space dynamic soil model excited by known longitudinal vibration of a defective pile[J]. Computers and Geotechnics, 2019, 112: 403-412
[9] SACK D A, SLAUGHTER S H, OLSON L D. Combined measurement of unknown foundation depths and soil properties with nondestructive evaluation methods[J]. Transportation Research Record, 2004, 1868(1): 76-80
[10] 宋人心, 王五平, 傅翔, 等. 灌注桩声波透射法缺陷分析方法——阴影重叠法[J]. 中南公路工程, 2006(2): 77-79
[11] 段文旭. 低应变法和声波透射法在桩基检测中的综合应用研究[D]. 成都: 成都理工大学, 2014.
[12] 李廷, 徐振华, 罗俊. 基桩声波透射法检测数据评判体系研究[J]. 岩土力学, 2010, 31(10): 3165-3172
[13] 邓国文, 王齐仁, 化得钧, 等. 声波透射法在基桩检测中的应用[J]. 工程勘察, 2013, 41(6): 92-95
[14] 韩小敏. 声波透射法在基桩质量检测中的应用研究[D]. 武汉: 武汉理工大学, 2007.
[15] 周兴平. 基桩检测技术的研究现状与展望[J]. 土工基础, 2005(3): 86-89
[16] 韩亮. 基桩声波透射法检测新技术及其应用[J]. 工程力学, 2007(S1): 141-145
[17] 韩亮, 王正成. 声波透射法新技术在桥梁灌注桩检测中的应用[J]. 铁道建筑, 2006(10): 1-4
[18] 李娟. 声波透射法基桩检测中管斜修正方法研究应用[J]. 中国建材科技, 2020, 29(4): 11-12
[19] 王军, 周滨, 孙根, 等. 声波透射法检测中声测管斜管的管距修正研究[J]. 城市道桥与防洪, 2018(4): 112-115
[20] 吴君涛, 王奎华. 弹性支承桩周围土振动响应解析解及其波动规律研究[J]. 岩石力学与工程学报, 2018, 37(10): 2384-2393
[21] 张伟. 基于透射波法和声波CT的桩基检测仿真研究[D]. 南昌: 南昌航空大学, 2017.
[22] 成联柄. 基桩声波透射法完整性检测的声场分布规律及数值模拟研究[D]. 重庆: 重庆大学, 2016.
[23] 建筑基桩检测技术规范: JGJ 106—2014[S]. 北京: 中国建筑工业出版社, 2014.
[24] 刘松, 顾继俊. 基于Abaqus的超声波A扫法的仿真实验验证[J]. 设备管理与维修, 2019(16): 23-26
[25] 戴飞飞, 王雪峰, 刘晔, 等. 基桩声波透射法桩径检测技术仿真与试验研究[J]. 江苏建筑, 2017(6): 83-86