登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>磁流变弹性体宽频负相关特性试验研究

磁流变弹性体宽频负相关特性试验研究

420    2022-11-18

免费

全文售价

作者:杨明亮1,2, 王凯1, 王秀鹏3, 杨勇彬1, 吴昱东4, 胡志锐1, 丁渭平1,2

作者单位:1. 西南交通大学机械工程学院,四川 成都 610031;
2. 先进驱动节能技术教育部工程研究中心,四川 成都 610031;
3. 中国核动力研究设计院设计所,四川 成都 610213;
4. 西南交通大学轨道交通国家实验室(筹),四川 成都 610031


关键词:磁流变弹性体;磁偶极子模型;动态性能;宽频;负相关特性


摘要:

为探究磁流变弹性体(magneto-rheological elastomer, MRE)磁致压缩动态性能及其磁致响应规律,论文首先基于磁偶极子模型指出影响MRE磁致压缩性能关键因素及其对MRE磁致压缩性能的影响具有正相关的特性,在此基础上设计考虑关键影响因素的MRE磁致压缩动、静态特性试验方案。通过加工不同基体材料和磁性颗粒粒径组合的MRE样件,分别开展不同磁场条件下的MRE样件动、静态试验。试验发现:基于磁偶极子模型预测MRE磁致压缩性能与MRE静态试验结果趋势保持一致,但与MRE动态试验结果却不能完全吻合,MRE磁致压缩动态性能在20~240 Hz宽频范围内呈现出负相关特性。进一步,对磁偶极子模型的假设(前提)条件进行剖析,指出引起试验结果与模型预测结果不完全吻合的主要原因是模型中三个假设(前提)条件设置不合理,与实际情况存在不可忽略的偏差。



Experimental study on the wide frequency negative correlation characteristics of magneto-rheological elastomer
YANG Mingliang1,2, WANG Kai1, WANG Xiupeng3, YANG Yongbin1, WU Yudong4, HU Zhirui1, DING Weiping1,2
1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China;
2. Engineering Research Center of Advanced Drive Energy Saving Technology, Ministry of Education, Chengdu 610031, China;
3. Design Institute, Nuclear Power Institute of China, Chengdu 610213, China;
4. Southwest Jiaotong University Rail Transit National Laboratory (Fighting), Chengdu 610031, China
Abstract: In order to explore the magneto rheological elastomer (MRE) magneto compression dynamic performance and its magneto response law, firstly, based on the magnetic dipole model, the paper points out that the key factors affecting the MRE magneto compression performance and their effects on the MRE magneto compression performance have positive correlation characteristics. On this basis, the dynamic and static characteristics test scheme of MRE magneto compression considering the key factors is designed. The dynamic and static tests of MRE samples with different matrix materials and magnetic particle size combinations were carried out under different magnetic fields. It is found that the predicted MRE magneto compression performance based on the magnetic dipole model is consistent with the MRE static test results, but not completely consistent with the MRE dynamic test results. The MRE magneto compression dynamic performance shows a negative correlation in the wide frequency range of 20-240 Hz. Further, the hypothesis (premise) conditions of the magnetic dipole model are analyzed, and it is pointed out that the main reason for the incompleteness between the test results and the model prediction results is that the three hypothesis (premise) conditions in the model are unreasonable, and the deviation from the actual situation can not be ignored.
Keywords: magneto-rheological elastomer;magnetic dipole model;dynamic performance;wide frequency;negative correlation characteristics
2022, 48(11):1-7  收稿日期: 2022-04-21;收到修改稿日期: 2022-05-30
基金项目: 国家自然科学基金(51775451);四川省科技计划(2020YFG0130);中央高校基本业务费(XJ2021KJZK054)
作者简介: 杨明亮(1982-),男,四川乐至县人,高级工程师,硕士生导师,博士,研究方向为车辆系统动力学及控制、车辆噪声振动及其舒适性
参考文献
[1] ALIAS N F, MUTHALIF A G A, ARPAN K A M, et al. Experimental investigation of static properties of magnetorheological elastomer[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2018, 42(2): 185-197
[2] 居本祥, 吕冰. 基于电容测试的磁流变弹性体磁控电学特性研究[J]. 磁性材料及器件, 2020, 51(4): 14-17
[3] 梁雅君, 周亚东, 李见春, 等. 磁流变弹性体刚度软化剪切性能试验研究[J]. 磁性材料及器件, 2021, 52(1): 32-37
[4] YUAN L, SUN S S, PAN Z X, et al. Mode coupling chatter suppression for robotic machining using semi-active magnetorheological elastomers absorber[J]. Mechanical Systems and Signal Processing, 2019, 117: 221-237
[5] 高宇, 杨伟, 范家浩, 等. 颗粒链取向对磁流变弹性体磁致剪切模量的影响[J]. 重庆大学学报, 2022, 45(3): 41-48
[6] RIGBI Z, JILKEN L. The response of an elastomer filled with soft ferrite to mechanical and magnetic influences[J]. Journal of Magnetism and Magnetic Materials, 1983, 37(3): 267-276
[7] JOLLY M R, CARLSON J D, MUNOZ B C. A model of the behaviour of magnetorheological materials[J]. Smart Materials and Structures, l996, 5(5): 607-614
[8] KUMBHAR S B, CHAVAN S P, PATIL A P, et al. Dynamic performance analysis of magnetorheological elastomer-shape memory alloy composite[J]. Journal of Vibration Engineering & Technologies, 2017, 5(6): 557-568
[9] JU B, WANG X. Magnetic field-dependent inductance properties based on magnetorheological elastomer[J]. Journal of Central South University, 2022, 29(4): 1075-1084
[10] LENG D X, XIAO H Y, SUN L, et al. Study on a magnetorheological elastomer-base device for offshore platform vibration control[J]. Journal of Intelligent Material Systems and Structures, 2018, 30(2): 243-255
[11] 雷拓, 郭绪新, 刘伯权, 等. 磁流变弹性体及其隔震(振)应用研究进展[J]. 建筑科学与工程学报, 2021, 38(1): 61-77
[12] ZHAO D, ZHAO Z, DAI X, et al. Study on mechanical properties of a novel polyurethane sponge magnetorheological elastomers in compressive mode[J]. Materials Research Express, 2019, 6(11): 116101
[13] 朱绪力, 孟永钢, 田煜. 基于偶极模型的磁流变弹性体磁致压缩弹性模量机理[J]. 中国机械工程, 2010, 21(23): 2861-2864
[14] 朱绪力, 孟永钢, 田煜. 颗粒体积比和磁场强度对磁流变弹性体颗粒结构的影响[J]. 清华大学学报:自然科学版, 2010, 50(2): 246
[15] 杨洁. 磁流变弹性体: 阻尼机理的研究与机械性能的强化[D]. 合肥: 中国科学技术大学, 2013.
[16] QIAO Y, ZHANG J, ZHANG M, et al. A magneto-hyperelastic model for silicone rubber-based isotropic magnetorheological elastomer under quasi-static compressive loading[J]. Polymers, 2020, 12(11): 2435
[17] ROSENSWEIG R E. Ferrohydrodynamics[M]. New York: Cambridge University Press, 1985.