您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>瞬态多组分质谱分析系统对燃料电池用氢气品质的检测

瞬态多组分质谱分析系统对燃料电池用氢气品质的检测

1007    2022-10-26

免费

全文售价

作者:潘凤文1, 李乃武1, 陆寒1, 候路路1, 黄小美2, 朱黎明1

作者单位:1. 潍柴动力股份有限公司,山东 潍坊 261061;
2. 重庆大学,重庆 400044


关键词:氢品质;痕量检测;燃料电池;瞬态多组分质谱分析系统


摘要:

为准确、快速、同步完成氢气中多种气体杂质含量的检测,实现对氢气品质的高效评价,该文采用瞬态多组分质谱分析系统,建立氢气品质检测分析方法。使用含有特定杂质组分的氢气及99.9999%氢气作为标准气对系统进行标定,测试样品氢气中各杂质组分含量,同时改变操作温度、进样压力,优化分析系统的操作条件。通过分析系统对不同来源氢气的检测,证实样品氢气中杂质种类和含量符合一般规律,最佳实验条件为20~25 ℃、0.2 MPa进样压力。最终得出结论:瞬态多组分质谱分析系统,检出限低、操作步骤简单、准确性高,适用于燃料电池用氢气品质检测。


Detection of hydrogen quality for fuel cell with multicomponent mass spectrometry analysis system
PAN Fengwen1, LI Naiwu1, LU Han1, HOU Lulu1, HUANG Xiaomei2, ZHU Liming1
1. Weichai Power Co., Ltd., Weifang 261061, China;
2. Chongqing University, Chongqing 400044, China
Abstract: In order that the content of various hydrogen gas impurities can be detected accurately, rapidly and simultaneously, realizing the efficient evaluation of hydrogen quality, a method for hydrogen quality detection and analysis was established by using transient multicomponent mass spectrometry analysis system. Calibrate the system using hydrogen containing a specific impurity component and 99.9999% hydrogen as the standard gas. Test contents of various impurities in hydrogen, and change the operating temperature and injection pressure to optimize the operating conditions of the analysis system. Through the detection of hydrogen from different sources by the analytical system, it is confirmed that the types and content of impurities in the sample hydrogen conform to the general rule, and the optimal experimental conditions are 20-25 ℃ and 0.2 MPa injection pressure. It is concluded that the transient multi-component mass spectrometry system, with low detection limit, simple operation steps and high accuracy, is suitable for hydrogen quality detection for fuel cells.
Keywords: hydrogen quality;trace detection;fuel cell;transient multicomponent mass spectrometry analysis system
2022, 48(10):94-99  收稿日期: 2021-09-18;收到修改稿日期: 2021-12-25
基金项目: 国家重点研发计划项目(2021YFB4001800)
作者简介:
参考文献
[1] 潘 义, 邓凡锋, 王维康, 等. 车用燃料氢气中杂质组分分析方法标准化现状与探讨——以质子交换膜燃料电池汽车为例[J]. 天然气工业, 2021, 41(4): 115-123
[2] 刘小敏, 张邦强, 艾斌, 等. 质子交换膜燃料电池用氢质量标准的发展历程和现状[J]. 化工进展, 2021, 40(2): 703-708
[3] SUHA Y M, SUMEYYE D, IRINA B, et al. Reformate gas composition and pressure effect on CO tolerant Pt/Ti0.8Mo0.2O2-C electrocatalyst for PEM fuel cells[J]. Int. J. Hydrogen Energy, 2021, 46(25): 13524-13533
[4] 王薇, 杨代军, 沈猛, 等. 氢气杂质CO对质子交换膜燃料电池性能影响建模[J]. 电源技术, 2009, 33(4): 329-332
[5] SETHURAMAN V A, WEIDER J W. Analysis of sulfur poisoning on a PEM fuel cell electrode[J]. Electrochim. Acta, 2010, 55(20): 5683-5694
[6] XIE F, SHAO Z G, ZHANG G, et al. A quantitative research on S- and SO2-poisoning Pt/Vulcan carbon fuel cell catalyst[J]. Electrochim. Acta, 2012, 67(4): 50-54
[7] 戴丽萍, 熊俊俏, 刘海英. 杂质气体对质子交换膜燃料电池性能影响的研究进展[J]. 化工进展, 2013, 32(9): 2068-2076
[8] 徐聪, 徐广通, 宗保宁, 等. 氢燃料电池汽车用氢气中痕量杂质分析技术进展[J]. 化工进展, 2021, 40(2): 688-702
[9] 魏王慧, 高艳秋, 于瑞祥, 等. 热脱附-气相色谱法定量检测氢气中痕量硫化物[J]. 低温与特气, 2018, 36(6): 37-41
[10] 魏王慧, 董翊, 于瑞祥, 等. 多维色谱技术快速检测电子气中痕量气体杂质的方法研究[J]. 化学试剂, 2020, 42(34): 68-74
[11] 朴世文, 张晓鹏, 钟兵. 质子交换膜燃料电池用氢气痕量杂质分析方法综述[J]. 煤炭加工与综合利用, 2019(10): 49-52
[12] 陈焕文, 胡斌, 张燮. 复杂样品质谱分析技术的原理与应用[J]. 分析化学, 2010, 38(8): 1069-1088
[13] 郝冬, 李林军, 王晓兵, 等. 基于快速检测的燃料电池汽车用氢气品质分析[J]. 电池工业, 2019, 23(03): 126-129
[14] 邓东旭. 气相色谱质谱法同时测定地表水中5种杀菌剂的残留量[J]. 中国测试, 2020, 46(11): 65-69
[15] 范文莹, 马婷婷, 王颖, 等. 吹扫捕集-气相色谱-三重四级杆质谱法测定地表水中的苯系物[J]. 中国测试, 2021, 47(10): 63-67
[16] PAPADIAS D D, AHMED S, KUMAR R, et al. Hydrogen quality for fuel cell vehicles-A modeling study of the sensitivity of impurity content in hydrogen to the process variables in the SMR–PSA pathway[J]. Int. J. Hydrogen Energy, 2009, 34(15): 6021-6035
[17] BESANCON B M, HASANOV V, LASTAPIS R I, et al. Hydrogen quality from decarbonized fossil fuels to fuel cells[J]. Int. J. Hydrogen Energy, 2008, 34(5): 2350-2360
[18] BACQUART T, ARRHENIUS K, PERSIJN S, et al. Hydrogen fuel quality from two main production processes: Steam methane reforming and proton exchange membrane water electrolysis[J]. J. Power Sources, 2019, 444(12): 227170