您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>低共熔溶剂萃取-气质联用测定水中萘、芴、芘

低共熔溶剂萃取-气质联用测定水中萘、芴、芘

1122    2022-10-26

免费

全文售价

作者:王玉春1, 李存满1, 冯树波2

作者单位:1. 河北科技大学河北省分析测试研究中心,河北 石家庄 050026;
2. 河北科技大学化学与制药工程学院,河北 石家庄 050026


关键词:低共熔溶剂;气质联用;废水;多环芳烃


摘要:

建立低共熔溶剂萃取,气质联用法测定水中的萘、芴、芘的分析方法。对低共熔溶剂的种类、混合比例、萃取方式、萃取温度等萃取条件进行选择优化。实验结果表明:比例为3∶2的薄荷醇和癸酸的低共熔溶剂,30 ℃下在酸性环境中以旋涡混合进行萃取,萃取剂用量为500 μL效果最佳。该方法检出限为0.01 mg/L,加标回收率为81.15%~91.49%。应用该方法对水样进行分析,具有成本低、方便快捷、绿色环保等优点。


Determination of naphthalene, fluorene and pyrene in water by deep eutectic solvent extraction with GC-MS
WANG Yuchun1, LI Cunman1, FENG Shubo2
1. Hebei Research Centre of Analysis and Testing , Hebei University of Science and Technology, Shijiazhuang 050026, China;
2. College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050026, China
Abstract: A method of deep eutectic solvent extraction combined with GC-MS was established for determination of polycyclic aromatic hydrocarbons (PAHs), naphthalene, fluorene and pyrene in waste water. The analytical conditions such as types of eutectic solvents, mixing ratio, extraction method and extraction temperature were optimized. The experimental results show that the optimum dosage of extractant is 500 μL, when the ratio of menthol to decanoic acid is 3∶2 and the extraction temperature is 30 ℃ in acidic environment is mixed by eddies. The detection limit of this method is 0.01 mg/L, the recovery rate was 81.15%-91.49%. This method has the advantages of low cost, convenience and environmental protection.
Keywords: deep eutectic solvent;GC-MS;waste water;polycyclic aromatic hydrocarbon
2022, 48(10):51-55  收稿日期: 2021-06-10;收到修改稿日期: 2021-08-22
基金项目:
作者简介: 王玉春(1977-),男,河北涞水县人,助理研究员,硕士,研究方向为农药残留研究
参考文献
[1] 叶雯, 刘美南. 我国城市污水再生利用的现状与对策[J]. 中国给水排水, 2002(12): 31-33
[2] 刘新, 王东红, 马梅, 等. 中国饮用水中多环芳烃的分布和健康风险评价[J]. 生态毒理学报, 2011, 6(2): 207-214
[3] 水质多环芳烃的测定 液液萃取和固相萃取高效液相色谱法: HJ478-2009 [S]. 北京: 中国环境出版社, 2009.
[4] 史俊文, 朱小红, 汪庆庆, 等. 控温超声提取-高效液相色谱法测定空气PM2.5中16种多环芳烃[J]. 理化检验(化学分册), 2019, 55(2): 136-140
[5] 刘滔, 游钒, 袁小雪, 等. 微波辅助萃取-高效液相色谱法同时测定PM2.5 中16 种多环芳烃[J]. 中国测试, 2018, 44(6): 48-53
[6] 薛洪海, 汪雨薇, 王颖, 等. 超高效液相色谱-串联质谱法测定水中痕量硝基多环芳烃[J]. 东北师大学报(自然科学版), 2017, 49(4): 134-139
[7] 商婷, 赵灵娟, 李佩, 等. 固相支撑液液萃取-液相色谱-串联质谱法测定尿液中10种单羟基多环芳烃[J]. 分析化学, 2019, 47(6): 876-882
[8] 海水中16种多环芳烃的测定气相色谱-质谱法: GB/T26411—2010 [S]. 北京: 中国质检出版社, 2011.
[9] 于徊萍, 刘亚娜, 刘鹏, 等. 凝胶渗透色谱净化-气相色谱/质谱法同时测定食用油脂中16种多环芳烃[J]. 环境化学, 2019, 38(2): 438-441
[10] 谭华东, 张汇杰, 武春嫒. GC-MS 结合微量QuEChERS 法快速测定土壤中16 种多环芳烃[J]. 中国测试, 2020, 46(1): 64-70
[11] 车凯, 郑宇超, 范辉, 等. 超声波萃取-气相色谱-质谱法同时测定土壤中16 种多环芳烃和18 种多氯联苯[J]. 中国测试, 2021, 47(5): 68-75
[12] 黄思静, 汪义杰, 许振成. 固相萃取-气相色谱串联质谱法测定饮用水中的多环芳烃和邻苯二甲酸酯[J]. 分析科学学报, 2012, 28(6): 762-766
[13] 谈义萌, 唐涛, 杨三东, 等. 超分子溶剂直提-荧光检测法测定水中的多环芳烃[J]. 色谱, 2017, 35(9): 1003-1007
[14] 邓晓燕, 张大海, 李先国. 气相色谱法测定水体中多环芳烃的前处理方法优化[J]. 分析试验室, 2015, 34(5): 525-528
[15] JOSEPHINE A A, ZIAD F, ASMA C, et al. A multiresidue method for the analysis of 90 pesticides, 16 PAHs, and 22 PCBs in honey using QuEChERS–SPME[J]. Analytical and Bioanalytical Chemistry, 2017, 409(21): 5157-5169
[16] LEILA O S, JEANCARLO P D A, SÉRGIO L C F, et al. Simultaneous determination of PAHS, nitro-PAHS and quinones in surface and groundwater samples using SDME/GC-MS[J]. Microchemical Journal, 2017, 133: 431-440
[17] NAIL A, ADIL E, RAMAZAN G. Monitoring of some trace metals in honeys by flame atomic absorption spectrometry after ultrasound assisted-dispersive liquid liquid microextraction using natural deep eutectic solvent[J]. Microchemical Journal, 2019, 147: 49-59
[18] SALLY E K, HIBA N. Green extraction of polyphenols from grapefruit peels using high voltage electrical discharges, deep eutectic solvents and aqueous glycerol[J]. Food Chemistry, 2019, 295: 165-171
[19] SUMAN K S, SUHRITA D, RUNU C. Effect of choline chloride-oxalic acid based deep eutectic solvent on the ultrasonic assisted extraction of polyphenols from Aegle marmelos[J]. Journal of Molecular Liquids, 2019, 287: 110956
[20] VICTOR Z O, TA Y W, CORNELIUS B T L L, et al. Sequential ultrasonication and deep eutectic solvent pretreatment to remove lignin and recover xylose from oil palm fronds[J]. Ultrasonics Sonochemistry, 2019, 58: 104598