您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于移动式浮标的无人艇航行监测系统设计

基于移动式浮标的无人艇航行监测系统设计

824    2022-04-26

免费

全文售价

作者:任兵1, 陈卫国1, 饶银辉2, 崔彬1,2, 洪晓斌1

作者单位:1. 华南理工大学机械与汽车工程学院,广东 广州 510640;
2. 广船国际有限公司,广东 广州 511462


关键词:移动式浮标;无人艇;DGPS;三维激光雷达


摘要:

针对无人艇航行性能测试需求,设计基于移动式浮标的无人艇航行监测系统。首先以浮标-岸基交互为基础,三维激光雷达和DGPS等作为感知传感器,设计无人艇航行监测系统框架。然后对三维激光雷达点云滤波处理,结合欧式聚类分割法把点云数据分割成多簇,利用OBB包围盒计算每一簇点云的几何特征并检测识别出被测无人艇,从而计算无人艇相对浮标的坐标位置。信号处理及控制器利用ROS同步订阅话题机制,对DGPS和三维激光雷达发布的消息融合,解算无人艇航行过程的位置信息。最后进行无人艇位置监测实验,结果表明,平均误差为1.34 m,约为0.074个被测无人艇艇身长度,验证基于移动式浮标的无人艇航行监测系统有效性,为无人艇性能测试奠定基础。


Design of unmanned surface vehicle navigation monitoring system based on mobile buoy
REN Bing1, CHEN Weiguo1, RAO Yinhui2, CUI Bin1,2, HONG Xiaobin1
1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China;
2. Guangzhou Shipyard International Company Limited, Guangzhou 511462, China
Abstract: In order to meet the requirements of USV navigation performance test, a navigation monitoring system based on mobile buoy is designed. Firstly, based on the buoy shore interaction, and three-dimensional lidar and DGPS are used as sensing sensors to design the navigation monitoring system framework of the unmanned ship. Then, the 3D LIDAR point cloud is filtered and divided into several clusters by combining with Euclidean clustering segmentation method. The geometric characteristics of each cluster are calculated by using OBB bounding box, and the USV is detected and identified, so as to calculate the relative buoy coordinate position of the USV. The signal processing and controller uses the ROS synchronous subscription topic mechanism to fuse the messages released by DGPS and 3D lidar to calculate the position information of the unmanned ship during navigation. The results show that the average error is 1.34 m, which is about 0.074 measured length of the USV. The effectiveness of the navigation monitoring system based on the mobile buoy is verified, which lays the foundation for the performance test of the USV.
Keywords: mobile buoy;unmanned surface vehicle;DGPS;3D lidar
2022, 48(4):123-128  收稿日期: 2021-02-26;收到修改稿日期: 2021-03-23
基金项目: 国家重点研发计划项目(2019YFB1804200);广东省科技计划项目(2018B010109005,2019B151502057)
作者简介: 任兵(1995-),男,江西赣州市人,硕士研究生,专业方向为制造工程智能化检测及仪器
参考文献
[1] 彭艳, 葛磊, 李小毛, 等. 无人水面艇研究现状与发展趋势[J]. 上海大学学报(自然科学版), 2019, 25(5): 645-654
[2] 魏新勇, 黄烨笙, 洪晓斌. 基于VFH*的水面无人艇局部避障方法[J]. 中国测试, 2018, 44(12): 39-45
[3] 黄烨笙, 徐郑攀, 陈远明, 等. 无人艇自主靠泊控制系统设计[J]. 中国测试, 2020, 46(10): 111-117
[4] 赵聪蛟, 周燕. 国内海洋浮标监测系统研究概况[J]. 海洋开发与管理, 2013, 30(11): 13-18
[5] KATO T, TERADA Y, TADOKORO K, et al. GNSS buoy array in the ocean for a synthetic geohazards monitoring system[C]//The 27th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2017.
[6] 王朋朋, 赵士伟, 孙庆国, 等. 基于BGAN的大型海洋浮标岸站接收系统设计[J]. 中国测试, 2014, 40(S1): 94-98
[7] 王柏林, 王皖东, 刘云平. 基于STM32的海洋气象浮标采集系统设计与实现[J]. 气象水文海洋仪器, 2019, 36(2): 85-89
[8] 唐原广, 王少奇. 基于海上浮标的风速风向数据的采集和处理[J]. 电脑知识与技术, 2017, 13(3): 238-242
[9] 周金金, 林志, 王小英. 基于ARM11的海洋浮标云台稳定控制系统[J]. 中国测试, 2016, 42(1): 74-78
[10] 李鹏, 江恩祝, 王思荐, 等. 海上警戒浮标实时监控系统[J]. 海洋工程, 2016, 34(6): 131-136
[11] HIMMELSBACH M, HUNDELSHAUSEN F V, WUENSCHE H J. Fast segmentation of 3D point clouds for ground vehicles[C]//2010 IEEE Intelligent Vehicles Symposium. IEEE, 2010: 560-565.
[12] 向阳霞, 王洪艳, 周泽云. KD-Tree的并行化创建方法分析[J]. 电脑知识与技术, 2013, 9(23): 5338-5340