登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 数字期刊群 >本期导读>460 MPa耐火钢高温硬度试验测试研究

460 MPa耐火钢高温硬度试验测试研究

1096    2022-04-26

¥0.50

全文售价

作者:周诗琦1, 王连庆2, 马文江1

作者单位:1. 北京科技大学自然科学基础实验中心,北京 100083;
2. 北京科技大学 新金属材料国家重点实验室,北京 100083


关键词:460 MPa耐火钢;高温硬度;有限元模拟;硬度值修正


摘要:

为测定材料在高温下的维氏硬度,提出一种间接测试金属材料高温硬度的修正方法。首先,对高温环境下的试件表面进行压头压入实验,待冷却至室温后测量压痕尺寸,得到相应的维氏硬度值。然后,采用有限元方法,考虑材料力学性能的温度依赖性,对高温环境下的压痕形貌进行数值模拟,得到相应的维氏硬度计算值。结果表明,在高温时两者之间的偏差较为明显,例如600 ℃时相对偏差达14%。结合有限元的分析结果,最后给出维氏硬度偏差修正的计算公式,为较准确地测量460 MPa耐火钢材料在高温时的硬度提供参考。


Study on high temperature hardness test of 460 MPa refractory steel
ZHOU Shiqi1, WANG Lianqing2, MA Wenjiang1
1. Basic Experimental Center for Natural Science, University of Science and Technology Beijing, Beijing 100083, China;
2. State Key Lab for Advanced Metals & Materials, University of Science and Technology Beijing, Beijing 100083, China
Abstract: To determine the Vickers hardness of the material at high temperature,a correction method for indirectly measuring the hardness of metal materials in high temperature environment is proposed. Firstly, the indentation test was carried out on the surface of the specimen at high temperature. After cooling to room temperature, the indentation size was measured, and the corresponding Vickers hardness value was obtained. Then, the finite element method was used to simulate the indentation morphology at high temperature, and the corresponding Vickers hardness values were obtained. The results show that the deviation between them is obvious at high temperature, such as 14% at 600 ℃. Combined with the results of finite element analysis, the calculation formula of correction deviation is given, which provides a reference for accurately measuring the hardness of 460 MPa refractory steel at high temperature.
Keywords: 460 MPa refractory steel;high temperature hardness;finite element simulation;hardness correction
2022, 48(4):1-5  收稿日期: 2021-05-26;收到修改稿日期: 2021-07-30
基金项目: 国家重点研发计划资助(2017YFB0304705)
作者简介: 周诗琦(1994-),女,内蒙古准格尔旗人,助理工程师,硕士,研究方向为实验力学
参考文献
[1] WHEELER J M, ARMSTRONG D, HEINZW, et al. High temperature nanoindentation: The state of the art and future challenges[J]. Current Opinion in Solid State and Materials Science, 2015, 19(6): 354-366
[2] PAVLINA E J, TYNE C. Correlation of yield strength and tensile strength with hardness for steels[J]. Journal of Materials Engineering and Performance, 2008, 17(6): 888-893
[3] 姚博, 蔡力勋, 包陈. 获取材料本构关系和硬度的压入法研究[J]. 中国测试, 2014, 40(2): 13-18
[4] 虞伟良. 硬度测试技术的新动态与发展趋势[J]. 理化检验(物理分册), 2003, 39(8): 401-403
[5] 张先锋, 杨晓, 陈庆垒, 等. 高温硬度测试技术在材料研发中的优势及其应用[J]. 金属加工(热加工), 2015(7): 45-47
[6] 牛瞳, 罗静. 金属材料高温维氏硬度的测量[J]. 物理测试, 2013, 31(3): 34-36
[7] ZHANG T, JIANG F, YAN L, et al. FEM modeling of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment[J]. Materials, 2018, 11(1): 34
[8] 金属材料维氏硬度试验第1部分: 试验方法: GB/T 4340.1—2009[S]. 北京: 中国质检出版社, 2009.
[9] RAMBERG W. Description of stress-strain curves by three parameters[J]. National Advisory Committee for Aeronautics, Technical Note, 1943(902): 1-13
[10] 薛河, 李萌, 李富强, 等. 基于压入试验的材料硬化指数及弹性模量计算方法[J]. 中国测试, 2020, 46(3): 26-31
[11] 孙渊, 王庆明. 压痕硬度测试的有限元分析[J]. 华东理工大学学报:社会科学版, 2007(6): 0883-0887
[12] 石新正, 孙亮, 马德军. 基于Vickers压痕的金属材料塑性参数压入测试方法[J]. 中国测试, 2018, 44(9): 141-147
[13] 邓记松. 单元与网格密度对有限元分析结果的影响[J]. 石油化工设备技术, 2017, 38(1): 12-15