您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于单端正激变换的远距离无线传感器网络电源自供电技术

基于单端正激变换的远距离无线传感器网络电源自供电技术

831    2022-03-24

免费

全文售价

作者:梁妍1, 马爱霞1, 郭腾达2

作者单位:1. 郑州工商学院工学院,河南 郑州 451400;
2. 光力科技股份有限公司,河南 郑州 450001


关键词:单端正激变换;远距离;无线传感器;电源;自供电;稳压处理


摘要:

针对远距离无线传感器网络内节点电源供能不稳定的问题,研究基于单端正激变换的远距离无线传感器网络电源自供电技术。根据Buck变换拓展产生具有稳压功能的单端正激变换器,基于功率管反向峰值电压上限值设计变换器内的功率变压器;根据电感系数和初级电感量确定变换器的钳位电容容量;利用脉冲宽度调制(PWM)芯片调制一系列脉冲宽度,等效获得电源供电所需波形。太阳能能源通过单端正激变换器进行稳压处理后,分别进入不同供电端,通过单片机对不同供电端电压情况进行检测,确定合适的供电端为电源供电。实验结果显示,该技术可在输出电压稳定的基础上,完成40 W功率输出;在负载条件一致的状态下,输出功率较为稳定。


Self powered technology of long distance wireless sensor network power supply based on single ended forward transform
LIANG Yan1, MA Aixia1, GUO Tengda2
1. College of Technology, Zhengzhou Technology and Business University, Zhengzhou 451400, China;
2. GL TECH Co., Ltd., Zhengzhou 450001, China
Abstract: Aiming at the problem of unstable power supply of nodes in long-distance wireless sensor networks, the self power supply technology of long-distance wireless sensor networks based on single ended forward conversion is studied. According to the expansion of Buck converter, a single ended forward converter with voltage stabilizing function is generated, and the power transformer in the converter is designed based on the upper limit of reverse peak voltage of power transistor; the clamping capacitance of the converter is determined according to the inductance coefficient and primary inductance; a series of pulse widths are modulated by PWM chip, and the waveform required for power supply is obtained equivalently. After the solar energy is stabilized by the single ended forward converter, it enters into different power supply terminals respectively. The voltage of different power supply terminals is detected by the single chip microcomputer to determine the appropriate power supply terminal for power supply. The experimental results show that the technology can achieve 40 W power output on the basis of stable output voltage, and the output power is relatively stable under the same load conditions.
Keywords: single ended forward conversion;long distance;wireless sensor;power supply;self power supply;voltage stabilization processing
2022, 48(3):112-117  收稿日期: 2021-04-21;收到修改稿日期: 2021-07-06
基金项目: 河南省科学技术厅科技攻关项目(9412019Y515,202102110269);河南省高等学校重点科研项目(19A510023);2020年河南省新工科研究与实践项目(2020JGLX098)
作者简介: 梁妍(1985-),女,河南郑州市人,讲师,硕士,研究方向为检测技术与自动化控制、电气自动化
参考文献
[1] GAO S, AO H, JIANG H. Energy harvesting performance of vertically staggered rectangle-through-holes cantilever in piezoelectric vibration energy harvester[J]. Journal of Energy Resources Technology, 2020, 142(10): 1-39
[2] 徐强菊, 葛丽莉, 宗昌灏, 等. 面向压电能量收集的传感器自供电电源设计[J]. 压电与声光, 2019, 41(2): 213-216
[3] 岳钒, 李帆, 黄晓东. 面向物联网应用的自供电温度传感器节点[J]. 电子器件, 2019, 42(6): 1473-1475
[4] 陈强, 陈章勇, 陈勇. 基于副边谐振技术的单端反激式变换器EMI分析[J]. 电工技术学报, 2019, 34(4): 728-737
[5] 胡强, 王海涛, 底楠, 等. 无线传感网中一种智能数据融合算法的实现及仿真分析[J]. 传感技术学报, 2018, 31(2): 283-288
[6] 师贺, 李磊, 管月, 等. 基于推挽正激交交变换器的三相三线无功和谐波综合补偿装置分析[J]. 电网技术, 2017, 41(4): 1237-1245
[7] 郭宝宁. 面向电力设备的温度检测节点功耗研究及自供电电源设计[J]. 数据采集与处理, 2018, 33(6): 1112-1118
[8] VIDHYA S, SASILATHA T. Performance analysis of ad-hoc on demand distance vector and energy power consumption AODV in wireless sensor networks[J]. Journal of Computational and Theoretical Nanoscience, 2017, 14(3): 1265-1270
[9] 黄红兵, 李威, 胡威, 等. 基于单端正激变换的地线取电系统电源电路仿真设计[J]. 电子器件, 2019, 42(3): 657-661
[10] 颜建辉, 陈崇成, 魏一丁, 等. 基于ZigBee无线传感器网络的林区局地环境监测系统[J]. 中国农业科技导报, 2017, 19(6): 72-82
[11] MANDOURARAKIS I, KOUTROULIS E. Unified system- and circuit-level optimization of res-based power-supply systems for the nodes of wireless sensor networks[J]. IEEE Transactions on Industrial Informatics, 2018, 14(2): 598-607
[12] 王冬波. 一种基于0.18 μm CMOS工艺的智能传感器网络节点设计与实现[J]. 半导体光电, 2017, 38(4): 551-556
[13] 陈杰, 包学才, 涂振宇. 面向水环境监测的无线传感网络协作波束形成远距离传输优化方法[J]. 水利水电技术, 2018, 536(6): 118-125
[14] CUI J , LIU Y , WEI K , et al. Research on clock source correction method based on wireless sensor network and TPSN network protocol[J]. Journal of Physics: Conference Series, 2020, 1449(1): 012047 (8pp)
[15] 张雯, 李昊业, 何巍, 等. 光纤气泡压力传感特性测试及误差分析[J]. 中国测试, 2020, 46(12): 142-148