您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>煤层回采过程中覆岩破坏及裂隙演化规律

煤层回采过程中覆岩破坏及裂隙演化规律

781    2022-03-24

免费

全文售价

作者:郎君

作者单位:吕梁学院矿业工程系,山西 吕梁 033000


关键词:矿业工程;裂隙演化;渗透特征;卸压


摘要:

综放开采覆岩破坏高度及裂隙演化规律对于煤矿安全生产具有重要意义,以山西某矿为试验矿井,采用分段注水、钻孔电视对覆岩破坏高度进行探测,对裂隙变化特征进行定量化分析,并对工作面回采过程中裂隙及应力演化进行数值模拟研究。研究结果表明:采动后冒落带破坏垂直高度为29.8~34.3 m,裂隙带破坏垂直高度为83.8~88.2 m;回采前覆岩裂隙以低角度、小宽度为主,裂隙数量发育程度低,随着工作面的回采覆岩裂隙数量明显增加,增加的裂隙以低角度、中宽度为主;覆岩的整个运动是一个动态的、连续的发育过程;应力呈现增加—减小—稳定的变化特征;采动过程中,近煤层区域覆岩裂隙数量一直处于较高水平。


Failure and fracture evolution of overburden rock during coal mining
LANG Jun
Department of Mining Engineering, Lüliang University, Lüliang 033000, China
Abstract: The fracture height and fracture evolution law of fully mechanized caving mining are of great significance to the safety production of coal mine. Taking a mine in Shanxi as a test mine, the fault height of overburden was detected by subsection water injection and borehole television, the characteristics of fracture change were quantitatively analyzed, and the fracture and stress evolution during mining face were numerically simulated. The results show that the vertical height of failure was 29.8-34.3 m, the vertical height of fracture zone was 83.8-88.2 m; With the increase of the number of cracks in the face, the increase of cracks was mainly low angle and medium width; the whole movement of overburden was a dynamic and continuous development process; the stress shows the characteristics of increasing-decreasing-stable change; and the number of overburden fractures in the near coal seam area was always at a high level.
Keywords: mining engineering;fracture evolution;penetration characteristics;pressure relief
2022, 48(3):47-52,65  收稿日期: 2021-02-12;收到修改稿日期: 2021-04-16
基金项目: 山西省高等学校科技创新项目资助(2019L0954)
作者简介: 郎君(1988-),男,黑龙江大庆市人,讲师,博士,研究方向为地质工程及矿井防治水
参考文献
[1] 杨健健, 王超, 杨伟伟, 等. 基于SVDD的煤化工无人值守设备预警平台研制[J]. 中国测试, 2019, 45(10): 135-138
[2] 王 晶, 王晓蕾. 下保护层开采时被保护层裂隙发育与渗透特征[J]. 采矿与岩层控制工程学报, 2021, 3(3): 1-9
[3] 王晓蕾. 新型煤岩体加固注浆料制备及应用分析[J]. 地下空间与工程学报, 2020, 16(3): 844-851
[4] 王晓蕾, 姬治岗, 罗文强. 破碎煤岩体注浆加固效果综合评价技术及应用[J]. 煤田地质与勘探, 2019, 47(6): 92-97
[5] 王晓蕾, 秦启荣, 熊祖强, 等. 层次注浆工艺在松软巷道破碎围加固中的应用[J]. 地下空间与工程学报, 2017, 13(1): 206-212
[6] 邓慧芳, 谢锐, 孙传猛, 等. 高可靠性煤矿井下火源无线预警监测系统[J]. 中国测试, 2018, 44(6): 83-86
[7] 易四海, 朱 伟, 刘德民. 薄基岩厚松散层条件覆岩破坏规律研究[J]. 煤炭工程, 2019, 51(11): 86-91
[8] 张纪星, 师修昌. 浅埋采空区大采高条件下覆岩破坏规律[J]. 中国地质灾害与防治学报, 2019, 30(5): 92-97
[9] 郑训臻, 王 岩, 赵海波, 等. 多煤层开采覆岩破坏规律数值模拟及工程实践[J]. 煤矿安全, 2019, 50(6): 158-161
[10] 熊祖强, 王晓蕾. 承压水上工作面破坏及裂隙演化相似模拟试验[J]. 地下空间与工程学报, 2014, 10(5): 1114-1120
[11] 马莲净, 赵宝峰, 曹海东. 特厚煤层分层综放开采软弱覆岩破坏规律研究[J]. 安全与环境学报, 2019, 19(2): 474-481
[12] 许文涛, 程 刚, 章杨松, 等. 采动影响下覆岩变形分布特征模型试验研究[J]. 煤炭技术, 2018, 37(11): 35-37
[13] 杨阿兰. 基于传感器融合的水平定向钻机轨迹测量[J]. 中国测试, 2020, 46(5): 39-44
[14] 潘龙, 邓楚铨, 徐振钦. 基于传递矩阵的钻孔应变法测量薄板残余应力[J]. 中国测试, 2021, 47(1): 36-41
[15] 李淑江, 张育辉, 窦如宏. 翼型厚度对水动力特性影响的数值模拟分析[J]. 中国测试, 2020, 46(5): 148-153