您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>道岔对高速列车小幅蛇行极限环演变的影响

道岔对高速列车小幅蛇行极限环演变的影响

979    2022-02-25

免费

全文售价

作者:杨宜坤1, 宁静1,2, 李艳萍1, 陈春俊1, 张兵3

作者单位:1. 西南交通大学机械工程学院,四川 成都 610031;
2. 轨道交通运维技术与装备四川省重点实验室,四川 成都 610031;
3. 西南交通大学 牵引动力国家重点实验室,四川 成都 610031


关键词:高速列车;小幅蛇行;高速道岔;SIMPACK;临界速度


摘要:

国内某线路高速列车因二系横向减振器故障在普通线路上产生小幅蛇行运动,并在过岔时演变为蛇行失稳。基于该线路列车参数建立SIMPACK动力学仿真模型与可动心轨道岔截面模型,分析减振器故障车辆过岔后的小幅蛇行极限环的演变趋势。首先计算普通轨道、转辙区、辙叉区、完整道岔4种激扰的分别作用下,故障车辆产生稳定极限环的临界速度。随后计算车辆在入岔前不同轮对蛇行横移量幅值对车辆临界速度的影响。最后通过相轨迹图分析上述因素对故障车辆的轮对蛇行不稳定极限环的演变的影响。研究结果表明,直向通过可动心轨道岔时的激扰增加的蛇行能量会使车辆产生极限环的速度降低,不稳定极限环演变得更快。车辆进入岔区前蛇行幅值增加,失稳临界速度降低,会进一步加快不稳定极限环的演变。因此在监测车辆进岔时需要对轮对小幅蛇行幅值进行分析,合理降速以防蛇行失稳的演变。


Influence of turnout on evolution of limit cycle of small hunting of high-speed trains
YANG Yikun1, NING Jing1,2, LI Yanping1, CHEN Chunjun1, ZHANG Bing3
1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China;
2. Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province, Chengdu 610031, China;
3. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
Abstract: It is because of the damage on lateral damper of secondary suspension, the small hunting occurred on an actual high-speed train in China on ordinary track evolved into hunting instability by passing turnout. A vehicle dynamic simulation model by SIMPACK and a moveable point rail turnout by rail profiles is established, in order to analyze the evolution of the limit cycle of the small hunting of the vehicle with damper fault. First, the critical speeds at which the faulty vehicle generates stable limit cycle is calculated under four different excitation of ordinary track, switch area, frog area and whole turnout area. Then calculated the critical speeds of the vehicle which enters the turnout in different initial wheelset lateral displacements of hunting. Finally, the influence of those factors above on evolution of the unstable limit cycle of wheelset hunting is analyzed by phase trajectory diagram. The research results show that the critical speed at which the stable limit cycle generated is reduced and the evolve speed of unstable limit cycle is increased by the hunting energy which increased by turnout excitation. By increase the initial displacement of hunting of vehicle when enters the turnout, the critical speed will decrease, and the unstable limit cycle will evolve faster. So, the amplitude of wheelset small hunting should be considered when monitor the vehicle entering the turnout, in order to pretend the evolution of hunting instability by inducing the vehicle speed.
Keywords: high-speed trains;small hunting;high-speed turnout;SIMPACK;critical speed
2022, 48(2):27-33  收稿日期: 2021-01-16;收到修改稿日期: 2021-03-23
基金项目: 国家自然科学基金项目(51975486,51975487);四川省科技计划资助(2020JDTD0012)
作者简介: 杨宜坤(1997-),男,山东烟台市人,硕士研究生,专业方向为高速列车在线监测与故障诊断
参考文献
[1] 王福天. 车辆系统动力学[M]. 北京: 中国铁道出版社, 1994.
[2] 董浩. 铁道车辆运动稳定性及分岔类型研究[D]. 成都: 西南交通大学, 2014.
[3] ZHAI W M, WANG K Y. Lateral hunting stability of railway vehicles running on elastic track structures[J]. Journal of Computational & Nonlinear Dynamics, 2010, 5(4): 2040-2049
[4] 林建辉. CRH380a-2061转向架蛇行异常振动报告[R]. 成都: 牵引动力国家重点实验室, 2011.
[5] TRUE H. Railway vehicle chaos and asymmetric hunting[J]. Vehicle System Dynamics, 2007, 20(sup1): 625-637
[6] 王晓东, 宁静, 陈春俊. 1D CNN和LSTM高速列车横向稳定性状态识别研究[J]. 中国测试, 2020, 46(11): 25-30
[7] 翟婉明, 王开云. 机车车辆侧向通过道岔时的运行安全性评估[J]. 同济大学学报(自然科学版), 2004(3): 382-386
[8] 宋欣武. 转向架蛇行失稳监测的横向位移识别方法研究[D]. 成都: 西南交通大学, 2017.
[9] ZENG Y C, ZHANG W H, SONG D L. A new strategy for hunting alarm and stability evaluation for railway vehicles based on nonlinear dynamics analysis[J]. Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit, 2020, 234(1): 54-64
[10] 陈杨, 宁静, 王靖铭, 等. 高速转向架小幅蛇行运动状态下过道岔研究[J]. 计算机测量与控制, 2019, 27(9): 174-178
[11] 赵飞, 宁静, 方明宽, 等. 基于动力学仿真数据的高速列车蛇行状态识别[J]. 中国测试, 2021, 47(1): 120-126
[12] 李金城, 丁军君, 牛悦丞, 等. 岔区轮轨滚动接触理论分析[J]. 西南交通大学学报, 2020, 55(6): 1355-1361
[13] KALKER J J. Survey of wheel—rail rolling contact theory[J]. Vehicle System Dynamics, 1979, 8(4): 317-358
[14] 任尊松, 金学松. 轮轨多点接触计算新方法曲线通过验证[J]. 机械工程学报, 2010, 46(16): 1-7
[15] POLACH O. Characteristic parameters of nonlinear wheel/rail contact geometry[J]. Vehicle System Dynamics, 2010, 48(sup1): 19-36