您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>近场通信技术下的无源心率检测方法

近场通信技术下的无源心率检测方法

1102    2021-12-23

免费

全文售价

作者:张帆1,2, 王文廉1,2, 王玉1,2

作者单位:1. 中北大学 仪器科学与动态测试教育部重点实验室,山西 太原 030051;
2. 电子测试技术国家重点实验室,山西 太原 030051


关键词:心率测量;近场通信;可穿戴测量;光电容积脉搏波描记法


摘要:

可穿戴的实时检测和诊断设备在生物医学领域的需求日益增加,而电源是可穿戴设备发展的薄弱环节。利用现有的近场通信(NFC)技术,设计一种无源无线柔性心率检测系统。测量端通过微型NFC天线从智能手机获得能量,利用光电容积脉搏波描记法(PPG)完成脉搏信号采集,并把信号处理结果发送到手机,进行记录和分析。对多名志愿者进行不同身体状态(运动状态、工作状态、休息状态)的心率测试,分析心率值和脉搏速率变异性(PRV)。实验结果表明,系统能够快速实时测量人体心率数据,实现无源无线生理信号监测,满足柔性可穿戴设备的设计需求。


Batter-free heart rate detection method based on near field communication technology
ZHANG Fan1,2, WANG Wenlian1,2, WANG Yu1,2
1. Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China;
2. National Key Laboratory for Electronic Measurement Technology, Taiyuan 030051, China
Abstract: Wearable real-time detection and diagnosis devices are increasingly needed in the biomedical field. But power supply is a weak link in the development of wearable devices. We designed a batter-free wireless flexible heart rate detection system using the existing near field communication (NFC) technology. The measurement terminal obtains energy from the smartphone through a miniature NFC antenna, and uses photoplethysmography (PPG) to complete pulse signal acquisition, and sends the signal processing results to the smartphone for recording and analysis. Heart rate and pulse rate variability (PRV) were analyzed by measuring the heart rate of multiple volunteers in different body states (exercise state, working state and rest state). The experimental results show that the system can measure human heart rate data in real time, realize passive wireless physiological signal monitoring and meet the design needs of flexible wearables devices.
Keywords: heart rate measurement;NFC;wearable measurement;photoplethysmography
2021, 47(12):14-22  收稿日期: 2020-08-30;收到修改稿日期: 2020-10-31
基金项目: 中北大学科学研究基金项目(XJJ2016023);山西省基础研究项目(2012021011-1)
作者简介: 张帆(1995-),男,山西大同市人,硕士研究生,专业方向为动态测试与智能仪器
参考文献
[1] LUN D L, YU L W, YUNG C T, et al. Design and implementation of a multifunction wearable device to monitor sleep physiological signals[J]. Micromachines, 2020, 11(7): 672-677
[2] XI Q H, JING R C, HAO W. A wearable device for collecting multi-signal parameters of newborn[J]. Computer Communications, 2020, 154: 269-277
[3] 张晟, 龚涛波, 王鲁康, 等. 用于运动姿势捕捉的可穿戴MEMS微型化加速度计研制[J]. 中国测试, 2021, 47(1): 82-87
[4] JUNG W S, KANG M G, MOON H G, et al. High output piezo triboelectric hybrid generator[J]. Rep, 2015, 5: 9309
[5] KERLEY R, HUANG X, HA D S. Energy harvesting from the human body and powering up implant devices[J]. Science Business Media Dordrecht, 2016, 11(57): 147-180
[6] MOHAMMADREZA A, NASSER M. A thermal energy harvesting power supply with an internal startup circuit for pacemakers[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24(1): 26-37
[7] HU U C, BONG H K, JONG Y L, et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care[J]. Science, 2019, 363(6430): 1-12
[8] ZHAP Q X, RAUDEL A, YONG Y H, et al. Flexible and stretchable antennas for biointegrated electronics[J]. Advanced Materials, 2019, 27(67): 1-16
[9] 王纪彬, 王文廉. NFC无源体温测量系统[J]. 传感技术学报, 2019, 32(8): 1271-1275
[10] LAZARO A, BOADA M, VILLARINO R, et al. Color measurement and analysis of fruit with a battery-less NFC sensor[J]. Sensors, 2019, 19(7): 1-21
[11] RAHIM R, URIEL B, SHIRISHA C, et al. Laser-enabled fabrication of flexible and transparent pH sensor with near-field communication for in-situ monitoring of wound infection[J]. Sensor & Actuators B Chemical, 2018, 267(4): 198-207
[12] KIM S B, LEE K H, RAJ M S, et al. Soft, skin-interfaced microfluidic systems with wireless, battery-free electronics for digital, real-time tracking of sweat loss and electrolyte composition[J]. Small, 2018, 14(45): 1-9
[13] PETAR K, STEINBERG M D, EMA H, et al. Wireless fluorimeter for mobile and low cost chemical sensing: a paper based chloride assay[J]. Sensors and Actuators B: Chemical, 2018, 275(8): 230-236
[14] RyU G S, YOU J, KOSTIANOVSKII V, et al. Flexible and printed PPG sensors for estimation of drowsiness[J]. IEEE Transactions on Electron Devices, 2018, 65(7): 2997-3004
[15] SCHONLE P, GLASER F, BURGER T, et al. A multi-sensor and parallel processing SoC for miniaturized medical instrumentation[J]. IEEE Journal of Solid-State Circuits, 2018, 43(8): 2076-2087
[16] KIM D H, LEE E, KIM J, et al. A sleepapnea monitoring IC for respiration, heart-rate, SpO2 and pulse-transit time measurement using thermistor, PPG and body-channel communication[J]. IEEE Sensors Journal, 2020, 20(4): 1997-2007
[17] 董尚文. NFC天线结构设计及性能研究[D]. 长春: 吉林大学, 2018.
[18] HIROFUMI N, WATARU I, NOBUTOMO M, et al. Relationship between AC/DC ratio and light-blocking structure for reflective photoplethysmographic sensor[J]. Sensors and Materials, 2018, 30(12): 3021-3028
[19] SATU R, HARRI L, TAPIO T. Comparison of photoplethysmogram measured from wrist and finger and the effect of measurement location on pulse arrival time[J]. Physiological Measurement, 2018, 33(12): 1-20
[20] MANAS M, SINHA A, SHARMA S, et al. A novel approach for IoT based wearable health monitoring and messaging system[J]. Journal of Ambient Intelligence and Humanized Computing, 2018, 10(7): 1-12
[21] 周亮, 余江军, 刘朝晖. 皮肤组织容积脉搏波400~1000 nm光谱特仿真研究[J]. 光谱学与光谱分析, 2020, 40(4): 1071-1075
[22] KUN C L, PAWEEYA R, WEI F K, et al. Toward hypertension prediction based on PPG-derived HRV signals: a feasibility study[J]. Journal of Medical Systems, 2018, 42(103): 1-7
[23] SCHAFER A, VAGEDES J. How accurate is pulse rate variability as an estimate of heart rate variability?[J]. International Journal of Cardiology, 2013, 166(1): 15-29
[24] JEYHANI V, MAHDIANI S, PELTOKANGAS M, et al. Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals[J]. Engineering in Medicine & Biology Society., 2015, 2015(37): 5952-5955
[25] LEILKAN G, ROSSI E, SANZ M, et al. Evaluation of agreement between temporal series obtained from electrocardiogram and pulse wave[J]. Journal of Physics Conference Series, 2016, 705(1): 12-38
[26] BANHALMI A, BORBÁS J, FIDRICH M, et al. Analysis of a pulse rate variability measurement using a smartphone camera[J]. Journal of Healthcare Engineering, 2018, 2(5): 1-15
[27] DAVUDE M, LEONARDO B, MICHELE C, et al. Profiling the propagation of error from PPG to HRV features in a wearable physiological-monitoring device[J]. Healthcare Technology Letters, 2018, 5(2): 59-64
[28] CHOI S D, CHO S H, JOUNG Y H. Development of real-time heart rate measurement device using wireless pressure sensor[J]. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2016, 29(5): 284-288
[29] 祝楠波, 周密, 余灿清, 等. 中国成年人健康生活方式状况分析[J]. 中华流行病学杂志, 2019, 40(2): 136-141