您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>SOI压力传感器高压失效分析

SOI压力传感器高压失效分析

1801    2021-06-24

免费

全文售价

作者:王韬, 万江, 张万里

作者单位:电子科技大学 电子薄膜与集成器件国家重点实验室,四川 成都 610054


关键词:SOI压力传感器;耐高压;提前失效;仿真验证


摘要:

该文面向基于MEMS技术的SOI压力传感器高压失效问题,以SAW器件为对象开展研究,分别对压力传感器的背腔与正面进行加压,测试两种加压方式下SOI压力传感器的极限耐压值。利用测得的极限耐压值对器件内部应力进行有限元仿真,分析器件耐压失效时的内部最大应力。实验与仿真结果表明,当从背腔加压时,器件失效时的内部应力低于预期值。使用有限元方法进行仿真,验证刻蚀槽的底部的楔形结构导致器件背腔根部侧二氧化硅的切应力集中,导致二氧化硅层与器件硅层的脱落,进而造成器件耐压提前失效的猜想。当器件内部最大应力达到410 MPa附近时,将会导致器件破裂失效的发生。


Analysis of high pressure failure of SOI pressure sensor
WANG Tao, WAN Jiang, ZHANG Wanli
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract: This paper aims to solve the problem of high pressure failure of SOI pressure sensor based on MEMS technology, and took SAW device as the research object. The back cavity and front end face of the pressure sensor were pressurized respectively to test the ultimate endurance pressure value of the SOI pressure sensor under two pressure modes. The internal stress of the device is simulated by finite element method and the internal maximum stress is analyzed. The experimental and simulation results show that the internal stress of the device is lower than the expected value when the pressure is applied to the back cavity. The finite element method was used to simulate and verify that the etched groove at the bottom of the wedge structure would cause shear stress of the concentration of silica at the root end of the backcavity device, which would cause the silica layer and the silicon layer of the device to fall off, and then cause the device to fail ahead of the supposed pressure resistance. When the maximum stress inside the device reaches about 410 MPa, the device will fail.
Keywords: SOI pressure sensor;resistance to high pressure;early failure;simulation verification
2021, 47(6):149-155  收稿日期: 2020-10-28;收到修改稿日期: 2020-12-05
基金项目:
作者简介: 王韬(1987-),男,四川自贡市人,讲师,博士,研究方向为MEMS传感器芯片
参考文献
[1] 王淑华. MEMS传感器现状及应用[J]. 微纳电子技术, 2011, 48(8): 516-522
[2] 李村, 杨鑫婉, 赵玉龙, 等. 适用于无引线封装的SOI压力敏感芯片总体结构[J]. 中国测试, 2020, 46(12): 54-59
[3] 陈德勇, 曹明威, 王军波, 等. 谐振式MEMS压力传感器的制作及圆片级真空封装[J]. 光学精密工程, 2014, 22(5): 1235-1242
[4] 颜重光. MEMS压力传感器及其应用[J]. 电子产品世界, 2009, 16(6): 58-60
[5] 雷克 K, 厄斯特高 C, 汉森O, 等. MEMS光学传感器: CN104603592A[P]. 2015-05-06.
[6] 吴亚明. 光学MEMS技术及其光通信应用[J]. 功能材料与器件学报, 2013, 19(3): 119-123
[7] 拉明 R I, 贝格比 M, 特雷纳 A. 用于制造MEMS麦克风的方法; CN101631739[P]. 2010-01-20.
[8] HELM R. MEMS麦克风的应用优势加速取代传统驻极体麦克风[J]. 电子与电脑, 2008(3): 26-29
[9] 宫正. 基于MEMS麦克风阵列的四通道语音采集系统设计[J]. 电子技术与软件工程, 2014(24): 133-134
[10] 林智春. MEMS压力传感器原理及其应用论述[J]. 通讯世界月刊, 2015
[11] 何文涛, 李艳华, 邹江波, 等. 高温压力传感器的研究现状与发展趋势[J]. 遥测遥控, 2016, 37(6): 61-71
[12] 张晓莉, 陈水金. 耐高温压力传感器研究现状与发展[J]. 传感器与微系统, 2011(2): 1-4
[13] WANG T, MU X, RANDIES A B, et al. Diaphragm shape effect on the sensitivity of surface acoustic wave based pressure sensor for harsh environment[J]. Applied Physics Letters, 2015, 36(12): 957-959
[14] 陈勇, 郭方方, 白晓弘, 等. 基于SOI技术高温压力传感器的研制[J]. 仪表技术与传感器, 2014(6): 4-6
[15] 潘峰. 声表面波材料与器件[M]. 北京: 科学出版社, 2012.
[16] 彭阳, 安建川, 李明, 等. 勐岗河大型悬索跨越管道成桥状态下非线性静力有限元分析[J]. 天然气工业, 2020, 40(1): 125-131
[17] TSAI M Y, CHEN C H, LIN C S. Test Methods for Silicon Die Strength[J]. Journal of Electronic Packaging, 2006, 128(4): 419-426
[18] GHANDHI S K. VLSI fabrication principles: silicon and gallium arsenide: sorab k ghandi revised[M]. 2nd edition. New York: Wiley-Interscience, 1994: 87-88.