您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>冻融钢筋混凝土框架结构抗震性能研究

冻融钢筋混凝土框架结构抗震性能研究

1937    2021-06-24

免费

全文售价

作者:何叶1, 秦丽云1, 杨锦1, 张奎2

作者单位:1. 西安培华学院 建筑与艺术设计学院,陕西 西安 710100;
2. 机械工业勘察设计研究院,陕西 西安 710043


关键词:钢筋混凝土;框架结构;冻融;抗震性能;时程分析


摘要:

为研究严寒地区冻融钢筋混凝土(RC)框架结构的抗震性能,采用有限元分析平台OpenSees对冻融RC框架进行宏观尺度建模。基于冻融RC构件的试验数据,验证冻融RC梁柱宏观尺度模型及建模方法的正确性。采用宏观尺度模型对5层RC框架结构进行静力推覆分析、弹塑性时程分析及地震易损性分析,对比不同冻融循环次数工况下的结构地震反应和退化规律。结果表明:随着冻融循环次数的增加,RC框架结构的承载能力及刚度明显退化,在地震作用下的位移响应逐渐增大,结构损伤和塑性发展程度不断加深,破坏概率明显提高;当冻融循环次数为50、100和200时,结构的抗侧承载力分别降低2.7%、4.8%及7.8%,结构在罕遇地震作用下的最大层间位移角分别增大7.8%、16.3%及23.9%,结构在峰值加速度为1.0 g下的倒塌概率分别增大14.7%、30.7%及45.6%。研究可为严寒地区RC框架结构的抗震性能评估提供参考。


Research on seismic performance of freeze-thaw reinforced concrete frame structure
HE Ye1, QIN Liyun1, YANG Jin1, ZHANG Kui2
1. Xi’an Peihua College, School of Architecture and Art Design, Xi’an 710100, China;
2. Machinery Industry Survey, Design and Research Institute, Xi’an 710043, China
Abstract: To investigate the seismic performance of freeze-thawed reinforced concrete (RC) frame structure in cold regions, the finite element platform OpenSees was used to model the freeze-thaw damaged RC frame. The experimental data of frost RC components were used to verify the correctness of the macro model of frost RC beam-column and modeling method. The static pushover analysis, time history analysis, and seismic fragility analysis of a five layer RC frame structure were performed, and the seismic response and degradation law of different freeze-thaw cycles were compared. The results show that with the increase of number of freeze-thaw cycles, the bearing capacity and stiffness of structures are obviously deteriorated. The displacement response, damage extend, plasticity extend, and damage probability under earthquakes are significantly increased. With number of freeze-thaw cycles of 50, 100, and 200, the structure causes a decrease in the lateral bearing capacity of structures by 2.7%, 4.8%, and 7.8%, respectively. The maximum inter- story drift ratio is reduced by 7.8%, 16.3%, and 23.9%, respectively, and the structural collapse probability of peak ground acceleration at 1.0 g is increased by 14.7%, 30.7%, and 45.6%, respectively. The study can provide a reference for the evaluation of seismic performance for RC frame structures in cold regions.
Keywords: reinforced concrete;frame structure;freeze-thaw;seismic performance;time history analysis
2021, 47(6):101-108  收稿日期: 2020-08-28;收到修改稿日期: 2020-09-24
基金项目: 陕西省教育厅2020年度一般专项科学研究计划(20JK0819);机械工业勘察设计研究院有限公司2019年度科技研发基金(11740502120190011)
作者简介: 何叶(1987-),女,陕西西安市人,高级工程师,硕士,主要从事结构设计及抗震研究
参考文献
[1] HANJARI K Z, KETTIL P, LUNDGREN K. Modelling the structural behavior of frost-damaged reinforced concrete structures[J]. Structure & Infrastructure Engineering, 2013, 9(5): 416-431
[2] LIU K H, YAN J C, ALAM M S, et al. Seismic fragility analysis of deteriorating recycled aggregate concrete bridge columns subjected to freeze-thaw cycles[J]. Construction and Building Materials, 2019, .187: 1-15
[3] HASAN M, UEDA T, SATO Y. Stress–strain relationship of frost-damaged concrete subjected to fatigue loading[J]. Journal of Materials in Civil Engineering, 2008, 20(1): 37-45
[4] 段安. 受冻融混凝土本构关系研究和冻融过程数值模拟[D]. 北京: 清华大学, 2009.
[5] 曹大富, 葛文杰, 郭容邑, 等. 冻融循环作用后钢筋混凝土梁受弯性能试验研究[J]. 建筑结构学报, 2014, 35(6): 137-144
[6] 曹大富, 秦晓川, 袁沈峰. 冻融后预应力混凝土梁受力全过程试验研究[J]. 土木工程学报, 2013, 46(8): 38-44
[7] XU S H, LI A B, JI Z Y, et al. Seismic performance of reinforced concrete columns after freeze–thaw cycles[J]. Construction and Building Materials, 2016, 102: 861-871
[8] 郑山锁, 甘传磊, 秦卿, 等. 冻融循环后一字形短肢剪力墙抗震性能试验研究[J]. 工程力学, 2016, 33(12): 94-103
[9] 郑捷, 董立国, 秦卿, 等. 冻融循环下钢筋混凝土框架梁柱中节点抗震性能试验研究[J]. 建筑结构学报, 2016, 37(10): 73-81
[10] WU Y F, ZHAO X M. Unified bond stress–slip model for reinforced concrete[J]. Journal of Structural Engineering, 2013, 139(11): 1951-1962
[11] ZHAO J, SRITHARAN S. Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures[J]. ACI Structural Journal, 2007, 104(2): 133-141
[12] 尹晓娟. 新型快通修补材料与道面混凝土基材粘结性能研究[J]. 中国测试, 2020, 46(9): 154-160
[13] TAO M X, NIE J G. Fiber beam-column model considering slab spatial composite effect for nonlinear analysis of composite frame systems[J]. Journal of Structural Engineering, 2014, 140(1): 04013039
[14] BERTO L, SAETTA A, TALLEDO D. Constitutive model of concrete damaged by freeze-thaw action for evaluation of structural performance of RC elements[J]. Construction and Building Materials, 2015, 98: 559-569
[15] 张艺欣, 郑山锁, 裴培, 等. 钢筋混凝土柱冻融损伤模型研究[J]. 工程力学, 2019, 36(2): 78-86
[16] BRAGE F, GIGLIOTTI R, LATERZA M. R/C existing structures with smooth reinforcing bars: experimental behavior of beam-column joints subject to cyclic lateral loads[J]. Open Construction and Building Technology Journal, 2009, 3(16): 52-67
[17] SCHOETTLER M J, RESTREPO J I, GUERRINI G, et al. A full-scale, single-column bridge bent tested by shake-table excitation[R]. No. PEER-2015/02. Pacific Earthquake Engineering Research Center, University of California, Berkeley, 2015.
[18] 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.
[19] SEZEN H, SETZLER E J. Reinforcement slip in reinforced concrete columns[J]. ACI Structural Journal, 2008, 105(3): 280-289
[20] MCKENNA F F, FENVES G L, SCOTT M H, et al. Open system for earthquake engineering simulation (OpenSees). Pacific Earthquake Engineering Research Center, University of California, Berkeley, 2000.
[21] 范萍萍, 陆新征, 叶列平. 不同抗震等级RC框架结构抗地震倒塌能力的研究[J]. 工程力学, 2018, 35(6): 33-41
[22] 建筑抗震设计规范: GB 50011—2010[S]. 北京: 中国建筑工业出版社, 2010.
[23] Quantification of building seismic performance factors, ATC-63 Project Report (90%Draft)[R]. FEMA P695, 2008.
[24] 温增平. 建筑物地震易损性分析研究[D]. 北京: 中国地震局地球物理研究所, 1999.
[25] HWANG H, 刘晶波. 地震作用下钢筋混凝土桥梁结构易损性分析[J]. 土木工程学报, 2004, 37(6): 47-51