您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>回火马氏体钢锻件蠕变疲劳交互作用研究

回火马氏体钢锻件蠕变疲劳交互作用研究

2278    2021-06-24

免费

全文售价

作者:刘兰舟1, 高怡斐1,2, 张志玮2, 王艳江2, 陈新2

作者单位:1. 钢铁研究总院,北京 100081;
2. 钢研纳克检测技术股份有限公司,北京 100081


关键词:性能评估;蠕变疲劳交互作用;低周疲劳;断口分析


摘要:

为研究1Cr11Ni2W2MoV回火马氏体不锈钢锻件在高温环境下的蠕变疲劳交互作用行为,加工哑铃状试样在电液压伺服试验机上开展不同峰值应变保持时间的低周疲劳试验。试验后,利用光学显微(OM)和扫描电子显微镜(SEM)对试样断口形貌和纵截面损伤特征进行分析。研究结果表明:随应变保持时间增长,循环软化效应加剧,迟滞回线的非弹性应变范围增大,疲劳寿命降低;断口形貌中疲劳辉纹特征减少,出现明显的韧性损伤特征;纵截面上次级裂纹增加,主裂纹路径在较长应变保持时间下更加曲折。原材料的微空洞缺陷在长保持时间下对主裂纹的扩展产生诱导作用,造成的损伤更大。蠕变疲劳交互作用体现在应变保持加剧循环软化效应和削弱材料抵抗裂纹萌生、扩展能力两个方面。


Study on creep fatigue interaction of tempered martensitic steel forging
LIU Lanzhou1, GAO Yifei1,2, ZHANG Zhiwei2, WANG Yanjiang2, CHEN Xin2
1. Central Iron and Steel Research Institute, Beijing 100081, China;
2. NCS Testing Technology Co., Ltd., Beijing 100081, China
Abstract: In order to investigating the creep-fatigue interaction behavior of 1Cr11Ni2W2MoV tempered martensitic stainless steel forging under high temperature environment, dumbbell specimens were machined, and low cycle fatigue tests with different peak strain hold time were carried out on an electro-hydraulic servo testing machine. After test, the fracture morphology and longitudinal section damage characteristics of fatigue specimens were analyzed by optical microscopy (OM) and scanning electron microscopy (SEM). It was found that longer hold time enhanced the cyclic softening effect, which enlarged the inelastic strain range of hysteresis loop, and caused the decrease of fatigue life. The fatigue striations in the fracture morphology were reduced, but ductile damage characteristics appeared. The secondary cracks increased in the longitudinal section, and the main crack path became more tortuous under longer hold time. The micro-void defects of the raw material induced the propagation of the main crack under long hold time, which resulted in greater damage. The creep fatigue interaction was embodied in two aspects. Strain hold not only intensified cyclic softening effect, but also weakened the ability of material to resist crack initiation and growth.
Keywords: performance evaluation;creep fatigue interaction;low cycle fatigue;fracture analysis
2021, 47(6):13-19  收稿日期: 2021-01-07;收到修改稿日期: 2021-02-17
基金项目:
作者简介: 刘兰舟(1995-),男,四川攀枝花市人,博士研究生,主要从事金属材料性能检测的科研工作
参考文献
[1] GHASSEMI A H, CHEN R P, MARUYAMA K, et al. Static recovery of tempered lath martensite microstructures during long-term aging in 9-12% Cr heat resistant steels[J]. Materials Letters, 2009, 63(28): 2423-2425
[2] ZHANG C, LI M Q, LI H. The behavior and mechanism of void self-shrinkage in diffusion bonded 1Cr11Ni2W2MoV steel joint: Effect of temperature and void morphology[J]. Journal of Manufacturing Processes, 2018, 35: 71-78
[3] 张玉皓, 顾煜炯, 马晓腾, 等. 核电汽轮机组扭振在线监测装置的设计与应用[J]. 中国测试, 2020, 46(7): 125-132
[4] MISHNEV R, DUDOVA N, KAIBYSHEV R. Low cycle fatigue behavior of a 10% Cr martensitic steel at 600 ℃[J]. ISIJ International, 2015, 55(11): 2469-2476
[5] HU Z F, WANG Q J, ZHANG B. Microstructure evolution in 9Cr martensitic steel during long-term creep at 650 ℃[J]. Journal of Iron and Steel Research, International, 2012, 19(7): 55-59
[6] DING B, REN W L, PENG J C, et al. Influence of dwell time on the creep-fatigue behavior of a directionally solidified Ni-based superalloy DZ445 at 850 ℃[J]. Materials Science and Engineering A, 2018, 725: 319-328
[7] 褚玉龙, 张长田, 潘雪纯, 等. 航空GH2036合金硬度热处理优化及疲劳性能DIC分析[J]. 中国测试, 2020, 46(2): 148-154
[8] ALSMADI Z Y, ALOMARI A, KUMAR N, et al. Effect of hold time on high temperature creep-fatigue behavior of Fe-25Ni-20Cr (wt. %) austenitic stainless steel (Alloy 709)[J]. Materials Science and Engineering A, 2020, 771: 138591
[9] BARTOŠÁK M, HORVÁTH J, ŠPANIEL M. Isothermal low-cycle fatigue and fatigue-creep of a 42CrMo4 steel[J]. International Journal of Fatigue, 2020, 135: 105538
[10] GOYAL S, MARIAPPAN K, SHANKAR V, et al. Studies on creep-fatigue interaction behaviour of Alloy 617M[J]. Materials Science and Engineering: A, 2018, 730: 16-23
[11] LI H, LI M Q, ZHANG X Y, et al. Characterization of the forgeability of 1Cr11Ni2W2MoV steel using processing map[J]. Materials Science and Engineering A, 2010, 527: 6505-6510
[12] FISCHER T, KUHN B. Impact of frequency, hold time and atmosphere on creep-fatigue of a 9~12% Cr steel from 300 ℃~600 ℃[J]. International Journal of Fatigue, 2019, 124: 288-302
[13] 凡丽梅, 董方旭, 安志武, 等. 橡胶/铝合金粘接构件脱粘缺陷非线性超声检测技术研究[J]. 中国测试, 2020, 46(8): 15-21,43.
[14] ZHAO Z Z, CHEN X. Effect of cyclic softening and stress relaxation on fatigue behavior of 2.25Cr1Mo0.25V steel under strain-controlled fatigue-creep interaction at 728 K[J]. International Journal of Fatigue, 2020, 140: 105848
[15] WANG X W, ZHANG W, GONG J M, et al. Low cycle fatigue and creep fatigue interaction behavior of 9Cr-0.5Mo-1.8W-V-Nb heat-resistant steel at high temperature[J]. Journal of Nuclear Materials, 2018, 505: 73-84