您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于声学特性的灯泡贯流式水轮发电机组噪声信号采集系统设计

基于声学特性的灯泡贯流式水轮发电机组噪声信号采集系统设计

1267    2021-03-24

免费

全文售价

作者:胡边1,2, 谭丕成3, 叶源4, 万元1,2, 刘宇3

作者单位:1. 湖南五凌电力科技有限公司,湖南 长沙 410004;
2. 国家电投集团水电产业创新中心,湖南 长沙 410004;
3. 五凌电力有限公司近尾洲水电厂,湖南 衡阳 421127;
4. 湖南师范大学,湖南 长沙 410004


关键词:灯泡贯流式机组;噪声;信号采集;调理电路


摘要:

大量程、高精度的噪声信号采集是基于声学特性的灯泡贯流式水轮发电机组故障诊断的前提。为此,该文设计一种灯泡贯流式水轮发电机组噪声信号采集系统,介绍噪声信号采集系统原理,完成基于两级分段组合的放大电路设计,解决传统单级调理电路不易实现全量程、大动态范围信号放大的问题,给出详细的信号放大电路、滤波电路等参数设计方法和采集卡A/D转换器分辨率计算方法。仿真和现场测试表明:该发电机组噪声采集系统的测量范围为20~140 dB,最大级线性误差为0.3 dB,可为后续基于声学谱分析的故障诊断提供可靠的数据。


Design of noise signal acquisition system for bulb tubular hydro-generating unit based on acoustic characteristics
HU Bian1,2, TAN Picheng3, YE Yuan4, WAN Yuan1,2, LIU Yu3
1. Hunan Wuling Power Technology Co., Ltd., Changsha 410004, China;
2. Hydropower Industry Innovation Center, State Power Investment Co., Ltd., Changsha 410004, China;
3. Jinwei Zhou Hydropower Plant, Wuling Power Co., Ltd., Hengyang 421127, China;
4. Hunan Normal University, Changsha 410004, China
Abstract: It is the premise of the fault diagnosis of the bulb tubular hydro-generating unit based on acoustic characteristics that the large-range noise signals are accurately acquired. In this paper, a system of acquiring the hydro-generating unit’s noise signals is designed. The principle of acquiring the noise signals is introduced, and the two-stage piecewise combined amplifier is proposed, which can solve the problem that the single-stage conditioning circuit is not easy to amplify the noise signal with the full range and the large dynamic range. In addition, the methods for solving the parameters of the amplifier and the filter, and the DAQ card are given in detail. The results of the simulation experiments and the field tests show that the measurement range of this proposed system is 20–140 dB, and the maximum linear error is 0.3 dB, which can provide the reliable data of fault diagnosis of the bulb tubular hydro-generating unit.
Keywords: bulb tubular unit;noise;signal acquisition;conditioning circuit
2021, 47(3):139-143  收稿日期: 2020-04-21;收到修改稿日期: 2020-06-18
基金项目:
作者简介: 胡边(1987-),男,湖南邵阳市人,高级工程师,博士,主要从事电力新技术、新产品开发
参考文献
[1] 李少波, 姚勇, 桂桂, 等. 基于CNN与多通道声学信号的齿轮故障诊断[J]. 中国测试, 2019, 45(10): 1-5
[2] LI S B, LIU G K, TAN X H, et al. An ensemble deep convolutional neural network model with improved D-S evidence fusion for bearing fault diagnosis[J]. Sensors, 2017, 17(8): 1729
[3] PICZAK K J. Environmental sound classification with convolutional neural networks[C]//IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP), 2015.
[4] TOKOZUME Y, HARADA T. Learning environmental sounds with end-to-end convolutional neural network[C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017.
[5] 王向红, 朱昌明, 毛汉领, 等. 基于声发射技术的水轮机转轮叶片疲劳裂纹扩展速率实验研究[J]. 中国机械工程, 2009, 20(7): 847-851
[6] 罗永要, 王正伟, 梁权伟. 混流式水轮机转轮动载荷作用下的应力特性[J]. 清华大学学报(自然科学版), 2005, 45(2): 235-237, 257
[7] 毛秀丽, 孙奥冉, PAVESI G, 等. 水泵水轮机甩负荷过程流动诱导噪声数值模拟[J]. 农业工程学报, 2018, 34(20): 60-66
[8] ABBOT P A, WALSH J, HALAS R. Cavitation noise investigation of a pump-turbine[C]//Waterpower. ASCE, 2015.
[9] LI J, LI M, ZHANG J, et al. Frequency-shift multiscale noise tuning stochastic resonance method for fault diagnosis of generator bearing in wind turbine[J]. Measurement, 2019, 133: 421-432
[10] 王宇, 迟毅林, 伍星, 等. 基于盲信号处理的机械噪声监测与故障诊断[J]. 振动与冲击, 2009, 28(6): 39-48, 200
[11] 唐拥军, 周喜军, 张飞. 噪声分析在水电机组故障诊断中的应用[J]. 中国农村水利水电, 2017(8): 206-208
[12] 秦桢. 基于STM32F407的多功能声级计设计[D]. 长沙: 湖南大学, 2014.
[13] 电声学 声级计: GB/T 3785.1—2010[S]. 北京: 中国质检出版社, 2010.