您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>7050铝合金Ⅰ-Ⅱ复合型疲劳裂纹研究

7050铝合金Ⅰ-Ⅱ复合型疲劳裂纹研究

1309    2021-01-27

免费

全文售价

作者:王连庆1, 可进2,3, 王红缨1

作者单位:1. 北京科技大学 新金属材料国家重点实验室,北京 100083;
2. 北京科技大学数理学院,北京 100083;
3. 中建三局工程设计有限公司,湖北 武汉 430000


关键词:Ⅰ-Ⅱ复合加载;裂纹扩展路径;裂纹扩展速率;断口形貌


摘要:

为研究7050铝合金在Ⅰ-Ⅱ型复合加载下疲劳裂纹扩展规律,在Amsler HFP5000高频试验机上利用Richard加载装置,完成紧凑拉剪(CTS)试样疲劳裂纹扩展试验,利用有限元对Ⅰ-Ⅱ复合型裂纹进行数值模拟,采用APDL命令流计算不同裂纹长度的应力强度因子,并引入最大周向应力准则计算裂纹扩展角,用有限元计算等效应力强度因子,并绘制不同加载角下的疲劳裂纹扩展速率曲线,在扫描电镜下观察裂纹扩展断口,分析断口形貌。研究结果表明:有限元数值模拟预测Ⅰ-Ⅱ复合型裂纹扩展角与试验值基本一致;引入当量应力强度因子后不同加载角下的I-Ⅱ型裂纹扩展速率曲线与Ⅰ裂纹的曲线基本重合;扫描电镜下疲劳断口为准解理断裂,断口的粗糙度与加载角有关,加载角越小,断口表面越粗糙。


Investigation on mixed mode Ⅰ-Ⅱ fatigue crack of 7050 aluminum alloy
WANG Lianqing1, KE Jin2,3, WANG Hongying1
1. The State Key Lab for Advanced Metals & Materials, University of Science and Technology Beijing, Beijing 100083, China;
2. School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
3. China Construction Third Bureau Engineering Design Co., Ltd., Wuhan 430000, China
Abstract: In order to investigate the fatigue crack growth of 7050 aluminum alloy under mixed mode Ⅰ-Ⅱ loading, the fatigue tests of crack propagation were carried out on Amsler HFP5000 machine by using CTS test specimens and the Richard loading device. The numerical simulation of mixed mode Ⅰ-Ⅱ fatigue crack was carried out by using the finite element method, the stress intensity factor of different crack length was calculated by using APDL command flow, the crack growth angle was calculated by using the maximum hoop stress criterion, and the curves of fatigue crack growth were drawn. The fracture surface was observed by using SEM, and the fracture morphology was analyzed. It was found that the crack growth angle under mixed mode Ⅰ-Ⅱ loading calculated by using FEM numerical simulation is basically consistent with the experimental value. The curves of crack growth rate under different loading angles are basically coincident with that of type Ⅰ crack after introducing the equivalent stress intensity factor. The fatigue fracture is quasi-cleavage fracture under SEM, the roughness of fracture is related to the loading angle, and the smaller the loading angle is, the rougher the fracture surface is.
Keywords: mixed mode I-Ⅱ loading;crack growth path;crack growth rate;fracture morphology
2021, 47(1):139-146  收稿日期: 2020-03-18;收到修改稿日期: 2020-06-24
基金项目: 国家自然科学基金委大科学装置联合基金培育项目(U2032121)
作者简介: 王连庆(1967-),男,黑龙江安达市人,高级工程师,博士,主要从事材料疲劳断裂测试与研究
参考文献
[1] ERDOGAN F, SIH G C. On the crack extension in plates under plane loading and transverse shear[J]. Journal of Basic Eng. ASME, 1963, 85(4): 519-527
[2] PLANISWAMY K, KNAUSS W G. On the problem of crack extension in brittle solids under general loading[J]. Mechanics Today, 1978, 4: 87-148
[3] PARIS P C. A rational analytic theory of fatigue[J]. Trend in Engineering, 1961, 13: 9-14
[4] QIAN J, FATEMI A. Mixed mode fatigue crack growth: A literature survey[J]. Engineering Fracture Mechanics, 1996, 55(6): 969-990
[5] RICHARD H A, SANDER M, FULLAND M, et al. Fatigue crack growth in real structures[J]. International Journal of Fatigue, 2013, 50: 83-88
[6] RICHARD H A, SCHRAMMB, SCHIRMEISEN N H. Cracks in mixed mode loading-theories, experiments, simulation[J]. International Journal of Fatigue, 2014, 62: 93-103
[7] LESIUK G, KUCHARSKI P, CORRRIA J A F O, et al. Mixed mode (Ⅰ+Ⅱ) Fatigue crack growth of long term operating bridge steel[J]. Procedia Engineering, 2016, 160: 262-269
[8] BABU M N, VENUGOPAL S, SASIKALA G. Evaluation of fatigue crack growth behaviour of SS 316 LN steel under mixed mode loading (mode Ⅰ & Ⅱ)[J]. Procedia Engineering, 2014, 86: 639-644
[9] ZERRES P, VORMWALD M. Review of fatigue crack growth under non-proportional mixed-mode loading[J]. International Journal of Fatigue, 2014, 58: 75-83
[10] SILVA A L L, DE JESUS A M P, XAVIER J. Combined analytical-numerical methodologies for the evaluation of mixed-mode (Ⅰ + Ⅱ) fatigue crack growth rates in structural steels[J]. Engineering Fracture Mechanics, 2017, 185: 124-138
[11] 黄如旭, 万正权. CTS试样Ⅰ/Ⅱ混合型断裂特性数值计算研究[J]. 固体力学学报, 2018, 39(6): 614-625
[12] 刘兵, 彭超群, 王日初, 等. 大飞机用铝合金的研究现状及展望[J]. 中国有色金属学报, 2010, 20(9): 1705-1715
[13] 孙伟, 张炜星, 张慧星, 等. 60Si2Mn弹簧钢连续冷却组织调控研究[J]. 中国测试, 2020, 46(2): 137-142
[14] 许洋, 任尚坤, 张文君, 等. 基于磁导率方法的钢板裂纹检测[J]. 中国测试, 2020, 46(1): 34-38,70
[15] RICHARD H A, BENITZ K. Loading device for the creation of mixed mode in fracture mechanics[J]. International Journal of Fracture, 1983, 22(2): R55-R58
[16] 金属材料疲劳试验疲劳裂纹扩展方法: GB/T6398—2017[S]. 北京: 中国质检出版社, 2018.
[17] 乐京霞, 周恒. 基于相互积分的应力强度因子数值分析[J]. 武汉理工大学学报(交通科学与工程版), 2013, 37(6): 1248-1250
[18] 苏少普, 曹淑, 森廖江海, 等. 基于表观断裂韧性的Ⅰ-Ⅱ型复合断裂准则分析[J]. 航空科学技术, 2018, 29(3): 67-73
[19] WANG Q, LIU X S, WANG W, et al. Mixed mode of fatigue crack growth behavior of Ni-Cr-Mo-V high strength steel weldments[J]. International Journal of Fatigue, 2017, 102: 79-91
[20] AOKI S, KISHIMOTO K, YOSHIDA T, et al. Elastic-plastic fracture behavior of an aluminum alloy under mixed mode loading[J]. Journal of the Mechanics & Physics of Solids, 1990, 38(2): 195-213
[21] TANAKA K. Fatigue crack propagation from a crack inclined to the cyclic tensile axis[J]. Engineering Fracture Mechanics, 1974, 6(3): 493-507