您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>混合储能系统分散自适应强扭曲虚拟阻抗控制

混合储能系统分散自适应强扭曲虚拟阻抗控制

1348    2021-01-27

免费

全文售价

作者:单锁兰, 谷志锋, 李宏城, 高升, 刘雅芳, 刘靖波

作者单位:石家庄铁道大学电气与电子工程学院,河北 石家庄 050043


关键词:混合储能系统;强扭曲控制;分散自适应控制;双向DC/DC变换器


摘要:

为提高负载冲击条件下混合储能系统(hybrid energy storage system, HESS)的稳定能力,考虑模型不确定及上界未知等现实约束,基于自适应高阶滑模控制理论,提出一种分散自适应强扭曲虚拟阻抗控制(decentralized adaptive super-twisting virtual impedance control, DA-ST)方法,并进行稳定性分析及理论仿真验证。仿真结果表明:在物理参数摄动和连续负载冲击条件下,与传统虚拟阻抗比例控制方式相对比,采用新提的控制策略,储能变换器输出电压纹波降低30%,输出电压稳定时间缩短0.3 s,输出电压超调降低,输出电流稳定时间缩短,超级电容动态功率补偿速度加快。DA-ST对于提高HESS抗负载冲击能力具有明显效果,可有效提高HESS稳定运行能力。


Decentralized adaptive super-twisting virtual impedance control for hybrid energy storage system
SHAN Suolan, GU Zhifeng, LI Hongcheng, GAO Sheng, LIU Yafang, LIU Jingbo
School of Electrical and Electrics Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
Abstract: In order to improve the stability of hybrid energy storage system (HESS) under load impact, decentralized adaptive super-twisting virtual impedance control (DA-ST) is proposed based on adaptive high-order sliding mode control theory. The stability analysis and theoretical simulation verification are carried out. Simulation results show that under the condition of physical parameter perturbation and continuous load impulse, compared with the traditional virtual impedance proportional control method, the output voltage ripple of the energy storage converter is reduced by 30%, the output voltage stability time is shortened by 0.3 s, the output voltage overshoot is reduced, the output current stability time is shortened, and the dynamic power compensation speed of super capacitor is accelerated. DA-ST has obvious effect on improving the anti-load impact ability of HESS, and can effectively improve the stable operation ability of HESS.
Keywords: hybrid energy storage system;super-twisting control;decentralized adaptive control;bidirectional DC/DC converter
2021, 47(1):127-132  收稿日期: 2020-07-15;收到修改稿日期: 2020-08-20
基金项目: 国家自然科学基金项目(51407196);河北省自然科学基金项目(E2017506007);河北省重点研发计划项目(20354501D);石家庄市科技计划项目(201060104A);研究生创新基金项目(YC2020065);全国大学生创新创业项目(S202010107044)
作者简介: 单锁兰(1996-),女,河北衡水市人,硕士研究生,专业方向为新能源微电网稳定控制研究
参考文献
[1] 李霞林, 郭力, 王成山, 等. 直流微电网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(1): 2-17
[2] 孟晓洁, 王海云, 王维庆. 采用自适应EEMD的风电混合储能系统能量管理控制策略[J]. 电力电容器与无功补偿, 2020, 41(3): 189-196, 204
[3] 宋强, 赵彪, 刘文华, 等. 智能直流配电网研究综述[J]. 中国电机工程学报, 2013, 33(25): 9-19
[4] 王成山, 武震, 李鹏. 分布式电能存储技术的应用前景与挑战[J]. 电力系统自动化, 2014, 38(16): 1-8
[5] FRANCES A, ASENSIA R, GARCIA O, et al. Modeling electronic power converters in smart DC microgrids-an overview[J]. IEEE Transactions on Smart Grid, 2017: 1-1
[6] KHORSANDI A, ASHOURLOO M, MOKHTARI H. A decentralized control method for a low-voltage DC microgrid[J]. IEEE Transactions on Energy Conversion, 2014, 29(4): 793-801
[7] 李武华, 顾云杰, 王宇翔, 等. 新能源直流微电网的控制架构与层次划分[J]. 电力系统自动化, 2015, 39(9): 156-163
[8] GHAREEB A T, MOHAMED A A, MOHAMMED O A. DC microgrids and distribution systems: an overview[J]. Electric Power Systems Research, 2015, 119(10): 407-417
[9] BIFARETTI S, ZANCHETTA P, WATSON A, et al. Advanced power electronic conversion and control system for universal and flexible power management[J]. IEEE Transactions on Smart Grid, 2011, 2(2): 231-243
[10] HUANG A Q, CROW M L, HEYDT G T, et al. The future renewable electric energy delivery and management (FREEDM) system: the energy internet[J]. Proceedings of the IEEE, 2011, 99(1): 133-148
[11] 丛晶, 宋坤, 鲁海威, 等. 新能源电力系统中的储能技术研究综述[J]. 电工电能新技术, 2014, 33(3): 53-59
[12] MIDDLEBROOK R D. A general unified approach to modeling switching-converter power stages[C]//IEEE Power Electronics Specialists Conference (PESC), 1976.
[13] GU Z F, SHAN S L, LIU W K, et al. Super-twisting direct torque optimal L2-gain control for self-excitation induction generation system[J]. International Journal of Electrical Power and Energy Systems, 2020, 119. https://doi.org/10.1016/j.ijepes.2020.105937.
[14] 谷志锋, 孙晓云, 朱长青, 等. 柔性自激异步发电系统反演自适应滑模控制[J]. 控制理论与应用, 2020, 37(4): 809-817