您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>机器人仿生电子皮肤阵列触觉传感器研究

机器人仿生电子皮肤阵列触觉传感器研究

2111    2020-12-22

免费

全文售价

作者:曹建国1,2,3,4, 程春福1,2,3,4, 周建辉1,2,3,4, 尹海斌5, 李洋1,2,3,4, 范阳1,2,3,4

作者单位:1. 北京科技大学顺德研究生院,广东 佛山 528399;
2. 北京科技大学机械工程学院,北京 100083;
3. 北京科技大学人工智能研究院,北京 100083;
4. 北京科技大学智能机器人创新研究院,北京 100083;
5. 武汉理工大学机电工程学院,湖北 武汉 430070


关键词:触觉传感器;柔弹性;压阻橡胶;银纳米线


摘要:

针对当前用于机器人等复杂三维载体表面或活动关节部位的触觉传感器实现高柔弹性和压力检测的难题,该文提出一种8×8阵列的仿生电子皮肤柔弹性阵列触觉传感器。基于压阻橡胶的导电机理采用微米镍粉填充聚二甲基硅氧烷(PDMS)完成触觉传感器的柔性敏感单元设计与制备,获得压阻橡胶在不同质量比时的压阻特性曲线,采用银纳米线(AgNWs)/PDMS复合材料制作的柔弹性阵列导电薄膜电极层和压阻橡胶圆片结合阵列式“多孔PDMS”中间传感层的多层“三明治”结构并通过模具固化成型工艺制备电子皮肤阵列触觉传感器,设计传感器检测系统检测其特性。实验表明柔弹性触觉传感器具有阵列数密集、测量范围广、线性度好等特点,传感器的空间分辨率为3×3 mm2,测量压力范围达到100~500 kPa,拉伸率可以达到30%,能够覆盖在三维载体表面完成分布式压力的测量,为机器人等复杂三维载体表面或活动关节部位的压力检测反馈和机器人智能化提供基础。


Research on robot bionic E-skin array tactile sensor
CAO Jianguo1,2,3,4, CHENG Chunfu1,2,3,4, ZHOU Jianhui1,2,3,4, YIN haibin5, LI Yang1,2,3,4, FAN Yang1,2,3,4
1. Shunde Graduate School of University of Science and Technology Beijing, Foshan 528399, China;
2. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China;
3. Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing 100083, China;
4. Innovation Institute for Intelligent Robot, University of Science and Technology Beijing, Beijing 100083, China;
5. School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
Abstract: Aiming at the current problem of using tactile sensors on complex three-dimensional carrier surfaces or moving joint parts of robot to achieve high flexibility, stretchability and pressure detection function, this paper proposes an 8×8 array of stretchable E-skin tactile sensors. Based on the conductive mechanism of piezoresistive rubber uses micron nickel powder filled polydimethylsiloxane (PDMS) to complete the design and preparation of the flexible sensitive unit of the tactile sensor, and obtain the piezoresistive characteristic curve of the piezoresistive rubber at different weight ratios. Multi-layer "sandwich" structure of flexible array conductive film electrode layer made of silver nanowires (AgNWs)/PDMS composite material and piezoresistive rubber discs combined with array type porous PDMS middle sensing layer and cured by mold, the sensor detection system is designed to detect its characteristics. Experiments show that the stretchable and flexible tactile sensor has the characteristics of dense array, wide measurement range and good linearity. The spatial resolution of the sensor is 3×3 mm2, the measurement pressure range is 100-500 kPa, and the stretch rate can reach 30%, which can cover the surface of the three-dimensional carrier completes the measurement of distributed pressure, and provides a basis for the application of complex three-dimensional carrier surfaces such as robots or moving joint parts for pressure detection feedback and robot intelligence.
Keywords: tactile sensor;flexibility and stretchability;piezoresistive rubber;AgNWs
2020, 46(12):1-8,59  收稿日期: 2020-11-01;收到修改稿日期: 2020-11-25
基金项目: 北京科技大学顺德研究生院科技创新专项( BK19AE006);国家自然科学基金资助项目(61603035);科技部创新方法工作专项(2016IM010300);中央高校基本科研业务费专项资金资助项目(FRF-GF-18-010B)
作者简介: 曹建国(1971-),男,湖南衡阳市人,教授,博士,研究方向为机器人仿生电子皮肤触觉传感与多模态感知、复杂机电系统检测与控制等
参考文献
[1] CHI C, SUN X, XUE N, et al. Recent progress in technologies for tactile sensors[J]. Sensors, 2018, 18(4): 948-977
[2] 张小俊, 刘欢欢, 赵少魁, 等. 机器人智能化研究的关键技术与发展展望[J]. 机械设计, 2016, 33(8): 1-7
[3] 宋爱国. 机器人触觉传感器发展概述[J]. 测控技术, 2020, 39(5): 2-8
[4] 曹建国, 周建辉, 缪存孝, 等. 电子皮肤触觉传感器研究进展与发展趋势[J]. 哈尔滨工业大学学报, 2017, 49(1): 1-13
[5] 黄振龙, 张尚杰, 潘泰松, 等. 基于碳纳米材料的柔性薄膜器件研究[J]. 中国科学: 物理学 力学 天文学, 2016, 46(4): 51-60
[6] CANNATA G, MAGGIALI M. An embedded tactile and force sensor for robotic manipulation and grasping[C]// Humanoid Robots, 2005 5th IEEE-RAS International Conference on. IEEE, 2005.
[7] LEE H K, CHANG S I, YOON E. A flexible polymer tactile sensor: fabrication and modular expandability for large area deployment[J]. Journal of Microelectromechanical Systems, 2006, 15(6): 1681-1686
[8] LEE H K, CHUNG J, CHANG S I, et al. Real-time measurement of the three-axis contact force distribution using a flexible capacitive polymer tactile sensor[J]. Journal of Micromechanics and Microengineering, 2011, 21(3): 035010
[9] 邱澜, 曹建国, 周建辉, 等. 机器人柔弹性仿生电子皮肤研究进展[J]. 中南大学学报(自然科学版), 2019, 50(5): 1065-1074
[10] CHO C, RYUH Y. Fabrication of flexible tactile force sensor using conductive ink and silicon elastomer[J]. Sensors and Actuadors A: Physical, 2016, 237(1): 72-80
[11] 郭小辉, 黄英, 刘彩霞, 等. 微圆顶阵列结构柔性触觉传感器设计与应用研究[J]. 电子科技大学学报, 2018, 47(1): 153-156
[12] WANG X, GU Y, XIONG Z, et al. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals[J]. Advanced Materials, 2014, 26(9): 1336-1342
[13] XU F, ZHU Y. Highly conductive and stretchable silver nanowire conductors[J]. Advanced Materials, 2012, 24(37): 5117-5122
[14] 汪浩鹏. 用于接触压力测量的新型高柔弹性电子皮肤研究[D]. 北京:北京科技大学, 2015.
[15] KIM T K, KIM J K, JEONG O C. Measurement of nonlinear mechanical properties of PDMS elastomer[J]. 2011, 88(8): 1982-1985.
[16] LUHENG W, TIANHUAI D, PENG W. Effects of conductive phase content on critical pressure of carbon black filled silicone rubber composite[J]. Sensors and Actuators A: Physical, 2007, 135(2): 587-592
[17] LEE M S, LEE K, KIM S Y, et al. High-Performance, transparent, and stretchable electrodes using graphene–metal nanowire hybrid structures[J]. Nano Letters, 2013, 13(6): 2814-2821
[18] YANG L, ZHANG T, ZHOU H, et al. Solution-processed flexible polymer solar cells with silver nanowire electrodes[J]. ACS Applied Materials & Interfaces, 2011, 3(10): 4075-4084
[19] AKTER T, KIM W S. Reversibly stretchable transparent conductive coatings of spray-deposited silver nanowires[J]. ACS APPLIED MATERIALS & INTERFACES, 2012, 4(4): 1855-1859
[20] SHIMOJO M, NAMIKI A, ISHIKAWA M, et al. A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method[J]. IEEE Sensors Journal, 2004, 4(5): 589-596
[21] TAKEI K, TAKAHASHI T, HO J C, et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin[J]. Nature Materials, 2010, 9(10): 821-826