您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>风电并网引起潮流分布对电力系统小干扰功角稳定性的影响研究

风电并网引起潮流分布对电力系统小干扰功角稳定性的影响研究

1693    2020-10-27

免费

全文售价

作者:刘多禄1, 马林2, 王炳文2

作者单位:1. 国网甘肃省电力公司,甘肃 兰州 730050;
2. 国网甘肃省电力公司经济技术研究院,甘肃 兰州 730050


关键词:风电并网;潮流分布;平衡机;机电振荡模式


摘要:

为研究风电并网的稳定性问题,该文从风电并网改变系统潮流分布的角度出发,研究风电并网对系统小干扰功角稳定性的影响。首先,通过线性化建模,推导计算同步机与系统其余部分间动态交互的方法。然后,研究风电并网前后,以及风电输出功率改变的影响,指出风电输出功率将改变系统平衡机出力,如果平衡机状态变量在机电振荡模式中参与性较高,则机电振荡模式受影响程度较大,内在原因是平衡机动态交互发生较大的改变。随后,研究风电场接入地点的影响,得出结论:风电场接入地点与平衡机间的距离由近及远时,机电振荡模式受平衡机动态交互变化的影响程度将逐渐减弱。最后演示和验证上述分析,为风电场位置规划选取提供理论指导。


Research on the influence of power distribution variation caused by wind power integration on power system small signal power angle stability
LIU Duolu1, MA Lin2, WANG Bingwen2
1. State Grid Gansu Electric Power Company, Lanzhou 730050, China;
2. Economic and Technology Research Institute,State Grid Gansu Electric Power Company, Lanzhou 730050, China
Abstract: In order to study the stability of wind power integration, this paper studies the influence of wind power integration on the power angle stability of small signal from the point of view that wind farm integration changes the power flow distribution of the system. Firstly, the dynamic interaction between the synchronous machine and the rest of the system is derived by linearization modeling. Then, the influence of wind farm before and after grid connection and the change of wind power output power is studied. It is pointed out that the output power of wind power will change the output of the system balancer. If the state variables of the balancing machine are highly involved in the electromechanical oscillation mode, the electromechanical oscillation mode is greatly affected. The internal reason is that the dynamic interaction of the balancing machine changes greatly. Then, the influence of wind farm access site is studied. It is concluded that when the distance between wind farm access point and balancer is different from near to far, the influence of dynamic interaction of balancing machine on electromechanical oscillation mode will gradually weaken. Finally, the system is taken as an example to demonstrate and verify the above analysis, providing theoretical guidance for the selection of wind farm location planning.
Keywords: wind power integration;power distribution;balancing machine;electromechanical oscillation mode
2020, 46(10):144-150  收稿日期: 2020-04-07;收到修改稿日期: 2020-06-12
基金项目: 国网甘肃省电力公司信息研究开发管理咨询投资计划(52272817000R)
作者简介: 刘多禄(1967-),男,甘肃白银市人,高级工程师,主要研究方向为电网工程技术
参考文献
[1] CHEN W, LIBAO S, LIMING W, et al. Small signal stability analysis considering grid-connected wind farms of dfig type[C]//Proceedings of the IEEE Power and Energy Society General Meeting Pittsburgh. USA, 2008: 1-6.
[2] 王忱, 石立宝, 姚良忠, 等. 大规模双馈型风电场的小扰动稳定分析[J]. 中国电机工程学报, 2010, 30(4): 63-70
[3] 贾宏杰, 王磊. 含大规模风电场的电力系统小扰动稳定性研究[J]. 电网技术, 2012, 36(10): 61-69
[4] 陈树勇, 常晓鹏, 孙华东, 等. 风电场接入对电力系统阻尼特性的影响[J]. 电网技术, 2013, 37(6): 1570-1577
[5] 高本锋, 李忍, 杨大业, 等. 双馈风电机组次同步振荡阻尼特性与抑制策略[J]. 电力自动化设备, 2015, 35(12): 11-20
[6] VITTAL E, KEANE A. Identification of critical wind farm locations for improved stability and system planning[J]. IEEE Transactions on Power Systems, 2013, 28(3): 2950-2958
[7] VITTAL E, O’MALLEY M, KEANE A. Rotor angle stability with high penetrations of wind generation[J]. IEEE Transactions on Power Systems, 2012, 27(1): 353-362
[8] 薛安成, 王清, 毕天姝. 双馈风机与同步机小扰动功角互作用机理分析[J]. 中国电机工程学报, 2016, 36(2): 417-425
[9] DU W J, CHEN X, WANG H F. Power system electromechanical oscillation modes as affected by dynamic interactions from grid-connected PMSGS for wind power generation[J]. IEEE Transactions on Power Systems, 2017, 8(3): 1301-1312
[10] DU W J, CHEN X, WANG H F. Strong dynamic interactions of grid-connected DFIGs with power systems caused by modal coupling [J]. IEEE Transactions on Power Systems ,2017, 32(6): 4386-4397.
[11] 王志文, 沈沉, 刘锋. 不同锁相机制的双馈电机对电力系统小干扰稳定的影响分析[J]. 中国电机工程学报, 2014, 34(34): 6167-6176
[12] GAUTAM D, VITTAL V, HARBOUR T. Impact of increased penetration of DFIG-based wind turbine generators on transient and small signal stability of power systems[J]. IEEE Transactions on Power Systems, 2009, 24(3): 1426-1434
[13] 李辉, 陈宏文, 杨超, 等. 含双馈风电场的电力系统低频振荡模态分析[J]. 中国电机工程学报, 2013, 33(28): 17-24
[14] QUINTERO J, VITTAL V, HEYDT G T, et al. The impact of increased penetration of converter control-based generators on power system modes of oscillation[J]. IEEE Transactions on Power Systems, 2014, 29(5): 2248-2256
[15] JAMEHBOZORG A, RADMAN G. Small signal analysis of power systems with wind and energy storage units[J]. IEEE Transactions on Power Systems, 2015, 30(1): 298-305
[16] SANCHEZ-GASCA J J, MILLER N W, PRICE W W. A modal analysis of a two-area system with significant wind power penetration[C]//Proceedings of the IEEE PES Power Systems Conference and Exposition. New York, NY: IEEE, 2004: 1148-1152.
[17] SLOOTWEG J G, KLING W L. The impact of large scale wind power generation on power system oscillations[J]. ElectricPower Systems Research, 2003, 67(1): 9-20
[18] 汤宏, 吴俊玲, 周双喜. 包含风电场电力系统的小干扰稳定分析建模和仿真[J]. 电网技术, 2004, 28(1): 38-41
[19] MENDONCA A, LOPES J A P. Impact of large scale wind power integration on small signal stability[C]//Proceedings of the 2005 International Conference on Future Power Systems. Amsterdam: IEEE, 2005.
[20] DU W J, BI J T, CAO J, et al. A method to examine the impact of grid connection of the DFIGs on power system electromechanical oscillation modes[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3775-3784
[21] DING N, LU Z, QIAO Y, et al. Simplified models of large-scale wind and their applications for small-signal stability[J]. Journal of Modern Power Systems and Clean Energy, 2013, 1(1): 58-64
[22] PADIYAR K R. Power system dynamics stability and control[M]. New York: Wiley, 1996.
[23] ROGERS G. Power system oscillations[M]. Norwell, MA: Kluwer, 2012.