您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>电化学测试技术在锂离子电池中的应用研究

电化学测试技术在锂离子电池中的应用研究

2704    2020-07-22

免费

全文售价

作者:牛凯, 李静如, 李旭晨, 马晶, 刘燊, 李浩, 张文堤, 彭鹏, 陈杰威, 刘乐浩, 姜冰, 褚立华, 李美成

作者单位:华北电力大学新能源学院,北京 102206


关键词:锂离子电池;电化学技术;循环伏安法;交流阻抗;充放电测试


摘要:

电化学测试技术在锂离子电池研究中起着重要作用,该文详细概括循环伏安测试技术、电化学阻抗测试技术和充放电测试技术的基本原理和操作方法,并总结这3类电化学测试技术在锂离子电池研究中的应用现状,认为这些电化学技术存在测试结果易受测试条件改变、模拟结果不准确等问题,指出还应发展原位电化学阻抗等测试技术以及更加可靠的数据分析方法,进一步规范测试标准,建立不同电池体系的大数据库,以期更好地研究二次电池中的电化学过程。


Research on the applications of electrochemical measurement technologies in lithium-ion batteries
NIU Kai, LI Jingru, LI Xuchen, MA Jing, LIU Shen, LI Hao, ZHANG Wendi, PENG Peng, CHEN Jiewei, LIU Lehao, JIANG Bing, CHU Lihua, LI Meicheng
School of New Energy, North China Electric Power University, Beijing 102206, China
Abstract: Electrochemical testing technology plays an important role in the study of lithium-ion battery. This paper introduces the basic principles and operation methods of cyclic voltammetry, electrochemical impedance testing technology and charge discharge testing technology in detail, and summarizes the application progress of these three kinds of electrochemical testing technology in the study of lithium-ion battery. But there are some problems with these technologies, such as the test results vary greatly with the test conditions, and the simulation results are not reliable. In the future, in-situ nondestructive electrochemical impedance testing technology and more reliable data analysis methods should be developed in order to better study the electrochemical process in the battery. Standard measurement methods and large database about different battery systems are also necessary.
Keywords: lithium-ion battery;electrochemical technology;cyclic voltammetry;AC impedance;charge and discharge testing
2020, 46(7):90-101  收稿日期: 2020-06-01;收到修改稿日期: 2020-06-25
基金项目: 教育部联合基金(6141A020225);北京市自然科学基金(L172036);华北电力大学中央高校基本科研业务费(2019QN001,2017ZZD02)
作者简介: 牛凯(1996-),男,山西运城市人,硕士研究生,专业方向为锂离子电池技术研究
参考文献
[1] 刘乐浩, 莫金珊, 李美成, 等. 纳米颗粒的自组装及其在锂离子电池中的应用[J]. 材料工程, 2020, 48(4): 15-24
[2] DUNN B, KAMATH H, TARASCON J-M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-35
[3] ZHANG X, ZOU L, XU Y, et al. Advanced electrolytes for fast-charging high-voltage lithium-ion batteries in wide-temperature range[J]. Advanced Energy Materials, 2020, 10(22): 2000368
[4] 凌仕刚, 吴娇杨, 张舒, 等. 锂离子电池基础科学问题(ⅫⅠ)-电化学测量方法[J]. 储能科学与技术, 2015, 4(1): 83-103
[5] 何为, 唐先忠, 王守绪, 等. 线性扫描伏安法与循环伏安法实验技术[J]. 实验科学与技术, 2005, S1: 134-6
[6] 李煜宇, 李真, 黄云辉. 电化学分析在新能源电池研究中的应用概述[J]. 分析科学学报, 2019, 35(6): 711-22
[7] 黄曼, 陈昀. 水热法制备纳米片状氧化镍及其对葡萄糖的电化学检测[J]. 中国测试, 2016, 42(11): 44-7
[8] 聂凯会, 耿振, 王其钰, 等. 锂电池研究中的循环伏安实验测量和分析方法[J]. 储能科学与技术, 2018, 7(3): 539-53
[9] WANG J G, ZHOU R, JIN D, et al. Uniform growth of MoS2 nanosheets on carbon nanofibers with enhanced electrochemical utilization for Li-ion batteries[J]. Electrochimica Acta, 2017, 231: 396-402
[10] LUO B, JIANG B, PENG P, et al. Improving the electrochemical performance of LiNi1/3Co1/3Mn1/3O2 cathode material via tungsten modification[J]. Electrochimica Acta, 2019, 297: 398-405
[11] BARD A J, FUALKNER L R. Electrochemical methods: fundamentals and applications[M]. New York:Wiley, 2001.
[12] FANG G, WU Z, ZHOU J, et al. Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode[J]. Advanced Energy Materials, 2018, 8(19): 1703155
[13] PENG P C J, NIU K, ET AL. MoO3/CNTs loading in separator for performance-improving current-collector-free lithium ion batteries[J]. Journal of Nanoelectronics and Optoelectronics, 2020, 15: 1-8
[14] THOMAS M G S R. AC impedance analysis of polycrystalline insertion electrodes: application to Li[1-x]CoO2[J]. Journal of The Electrochemical Society, 1985, 132(7): 1521
[15] BARSOUKOV E. Comparison of kinetic properties of LiCoO2 and LiTi0.05Mg0.05Ni0.7Co0.2O2 by impedance spectroscopy[J]. Solid State Ionics, 2003, 161(1/2): 19-29
[16] BARSOUKOV E M, ROSS J. Impedance spectroscopy (theory, experiment, and applications) || Appendix: Abbreviations and Definitions of Models[M]. New York:Wiley, 2005: 539.
[17] LIU L, LI X, HE G, et al. SiO@C/TiO2 nanospheres with dual stabilized architecture as anode material for high-performance Li-ion battery[J]. Journal of Alloys and Compounds, 2020, 836: 155407
[18] LIU R, CHEN J, XUN J, et al. Numerical investigation of thermal behaviors in lithium-ion battery stack discharge[J]. Applied Energy, 2014, 132: 288-97
[19] 董雅顺. 电池充放电测试系统的校准方法研究[J]. 通信电源技术, 2020, 37(1): 50-1+4
[20] 刘力舟. 锂离子电池测试系统设计与实现[D]. 绵阳:西南科技大学, 2017.
[21] 王其钰, 褚赓, 张杰男, 等. 锂离子扣式电池的组装, 充放电测量和数据分析[J]. 储能科学与技术, 2018, 7(2): 327-44
[22] JIANG B, LUO B, LI J, et al. Electrochemical effect of graphite fluoride modification on Li-rich cathode material in lithium ion battery[J]. Ceramics International, 2019, 45(1): 160-67
[23] KATO H, KOBAYASHI Y, MIYASHIRO H. Differential voltage curve analysis of a lithium-ion battery during discharge[J]. Journal of Power Sources, 2018, 398(15): 49-54
[24] LI X, WU G, CHEN J, et al. Low-crystallinity molybdenum sulfide nanosheets assembled on carbon nanotubes for long-life lithium storage: Unusual electrochemical behaviors and ascending capacities[J]. Applied Surface Science, 2017, 392(15): 297-304