您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>超声相控阵全聚焦成像技术倾斜裂纹定量模拟

超声相控阵全聚焦成像技术倾斜裂纹定量模拟

2343    2020-04-27

免费

全文售价

作者:潘峥, 张邦杰, 汪洪量, 朱国胜, 郭涛

作者单位:国营芜湖机械厂, 安徽 芜湖 241000


关键词:超声;倾斜裂纹;定量;全阵列信号采集;全聚焦;相控阵


摘要:

利用超声B扫描图像对裂纹长度定量时,由于采用整体发射-接收的方式从单侧接收缺陷回波信号,导致图像中裂纹上、下端回波的时间差随裂纹倾角变化,引起较大的定量误差。为克服上述不足,该文采用一种基于全阵列信号采集(full matrix capture,FMC)的超声相控阵成像技术。该技术利用独立发射-接收阵元组合从多个方位采集包含更多缺陷特征的全阵列信号,借助全聚焦(total focusing method,TFM)成像算法实现成像区域中每一个点的虚拟聚焦,进而通过高分辨率图像显示裂纹上、下尖端的实际位置,以直观、准确地确定裂纹的长度和倾角。对厚度25 mm碳钢中长度3.0 mm的–75°、–60°、–45°、–30°、–15°、0°底面开口裂纹进行TFM成像和定量数值模拟。结果表明,TFM成像的倾斜裂纹定量精度优于B扫描成像。


Simulation on inclined cracks sizing of using the ultrasonic phased array total focusing imaging technique
PAN Zheng, ZHANG Bangjie, WANG Hongliang, ZHU Guosheng, GUO Tao
State-owned Wuhu Machinery Factory, Wuhu 241000, China
Abstract: When the inclined crack sizing using the ultrasonic B-scan, due to make use of one monolithic transducer at a side of the crack to acquire the A-scan signals, the time-of-flight of the crack top and bottom tip echo will change with the inclined angle and causes the sizing error. For the above problem, a ultrasonic phased array imaging technique base upon the full matrix capture (FMC) is employed. The technique is capable of capturing the FMC data set which includes more defect information using the transmitter-receiver array elements at different locations. Then a high-resolution image that presents the actual position of the two echoes is synthetically focused at every pixel by total focusing method (TFM). According to the maximum amplitude coordinate of two echoes in the TFM image, the crack length and inclined angle can be estimated. The 3.0 mm bottom surface cracks with –75 degree, –60 degree, –45 degree, –30 degree, –15 degree and 0 degree in 25 mm thickness carbon steel is simulated for TFM imaging and sizing. The result shows that sizing accuracy of TFM imaging is superior to the B-scan imaging.
Keywords: ultrasonic;inclined crack;sizing;FMC;TFM;phased array
2020, 46(4):36-41  收稿日期: 2019-08-05;收到修改稿日期: 2019-10-11
基金项目:
作者简介: 潘峥(1977-),女,安徽桐城市人,高级工程师,主要研究方向为无损检测新技术
参考文献
[1] 柯常波, 陈铁群, 谢宝忠, 等. 埋藏裂纹高度的超声无损测定[J]. 压力容器, 2006, 23(9):44-47
[2] 谈洋. 超声相控阵裂纹定量检测有限差分法数值模拟[D]. 大连:大连理工大学, 2013.
[3] LU Z, WEI G, CHEN F. TOF estimation of ultrasonic echo signal for object location[J]. Information Technology Journal, 2011, 10(11):2182-2188
[4] 刘书宏. 超声相控阵测量裂纹高度与缺陷定性研究[D]. 南昌:南昌航空大学, 2013.
[5] 彭国平, 张在东, 刘书宏, 等. 基于双波的焊缝根部底面开口裂纹的超声相控阵测量[J]. 失效分析与预防, 2014, 9(5):266-270
[6] SATYANARAYAN L, SRIDHAR C, KRISHNAMURTHY C, et al. Simulation of ultrasonic phased array technique for imaging and sizing of defects using longitudinal waves[J]. International Journal of Pressure Vessels and Piping, 2007, 84(12):716-729
[7] HOSEINI M R, WANG X, ZUO M J. Modified relative arrival time technique for sizing inclined cracks[J]. Measurement, 2014, 50:86-92
[8] GRUBER G J. Defect identification and sizing by the ultrasonic satellite-pulse technique[J]. Journal of Nondestructive Evaluation, 1980, 1(4):263-276
[9] CIORAU P. Critical comments on detection and sizing linear defects by conventional tip-echo diffraction and mode-converted ultrasonic techniques for piping and pressure vessel welds[J]. NDT net-The e-Journal of Nondestructive Testing, 2006, 11(5)
[10] HUNTER A J, DRINKWATER B W, WILCOX P D. The wavenumber algorithm for full-matrix imaging using an ultrasonic array[J]. IEEE Transactions on Ultrasonics, Ferro-electrics, and Frequency Control, 2008, 55(11):2450-2462
[11] ZHANG J, DRINKWATER B W, WILCOX P D, et al. Defect detection using ultrasonic arrays:The multi-mode total focusing method[J]. NDT & E International, 2010, 43(2):123-133
[12] HOLMES C, DRINKWATER B W, WILCOX P D. Post-processing of the full matrix of ultrasonic transmit-receive array data for non-destructive evaluation[J]. NDT & E International, 2005, 38(8):701-711
[13] 彭华. CRH动车轮对超声相控阵全矩阵成像技术研究[D]. 成都:西南交通大学, 2014.
[14] ZHANG J, DRINKWATER B W, WILCOX P D. Effect of roughness on imaging and sizing rough crack-like defects using ultrasonic arrays[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2012, 59(5):939-948
[15] SCHECHTER R, CHASKELIS H, MIGNOGNA R, et al. Real-time parallel computation and visualization of ultrasonic pulses in solids[J]. Science, 1994, 265(5176):1188-1192
[16] LIN L, ZHANG X, CHEN J, et al. A novel random void model and its application in predicting void content of composites based on ultrasonic attenuation coefficient[J]. Applied Physics A, 2011, 103(4):1153-1157
[17] MA Z Y, ZHAO Y, LUO Z B, et al. Ultrasonic characterization of thermally grown oxide in thermal barrier coating by reflection coefficient amplitude spectrum[J]. Ultrasonics, 2014, 54(4):1005-1009
[18] CHEN Y, LUO Z B, ZHOU Q, et al. Modeling of ultrasonic propagation in heavy-walled centrifugally cast austenitic Stainless steel based on EBSD analysis[J]. Ultrasonics, 2015, 59:31-39
[19] ZHANG J, DRINKWATER B W, WILCOX P D. Comparison of ultrasonic array imaging algorithms for nondestructive evaluation[J]. IEEE Transactions on Ultrasonics, Ferro-electrics, and Frequency Control, 2013, 60(8):1732-1745