您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>复杂装备滚动轴承的故障诊断与预测方法研究综述

复杂装备滚动轴承的故障诊断与预测方法研究综述

3061    2020-03-26

免费

全文售价

作者:赵磊, 张永祥, 朱丹宸

作者单位:海军工程大学,湖北 武汉 430033


关键词:复杂装备;滚动轴承;故障诊断;预测


摘要:

复杂装备不仅结构复杂,而且各种零件之间参差交错,耦合性强,激励源多样。滚动轴承作为复杂装备最重要的零部件之一,在保持运动精度和提高机械效率上发挥不可替代的作用,对滚动轴承进行故障诊断与预测可以大大减少维修成本以及时间,优化资源配置,更加有效地保障设备的正常运行,在提高装备可靠性和增强维修保障能力方面具有重大的实践价值。通过综述国内外对故障诊断与预测方法的研究现状,从故障特征提取、故障模式识别、预测模型这3个方面出发,分别分析其主要方法的优缺点,并对复杂装备滚动轴承故障诊断与预测方法的发展进行总结展望。


Review on rolling bearing fault diagnosis and prognostic for complex equipment
ZHAO Lei, ZHANG Yongxiang, ZHU Danchen
Naval University of Engineering, Wuhan 430033, China
Abstract: Complex equipment is complicated in structure, and has staggered parts, strong coupling, and various excitation sources. Rolling bearing is essential parts of complex equipment, which plays an irreplaceable role in maintaining motion accuracy and improving mechanical efficiency. Therefore, fault diagnosis and prognostic of bearing can greatly reduce maintenance costs and time, optimize resources allocation, ensure the normal operation of equipment, and have great practical value in improving equipment reliability and enhancing maintenance support capacity. By reviewing the methods of fault diagnosis and prognostic, this article analyzes the pros and cons of the main methods in fault feature extraction, fault pattern recognition and prognostic model. Finally, it is the vision for future development of rolling bearing fault diagnosis and prognostic of complex equipment.
Keywords: complex equipment;rolling bearing;fault diagnosis;prognostic
2020, 46(3):17-25  收稿日期: 2019-04-18;收到修改稿日期: 2019-08-27
基金项目: 国家自然科学基金项目(41631072,41774021);军队重点预研基金项目(9140A27020413JB11076);湖北省自然科学基金(2017CFB672)
作者简介: 赵磊(1991-),男,山东滕州市人,博士,研究方向为舰船动力装置状态检测、故障诊断与维修
参考文献
[1] 吕琛, 马剑, 王自力. PHM技术国内外发展情况综述[J]. 计算机测量与控制, 2016, 24(9): 1-4
[2] 张小丽, 陈雪峰, 李兵, 等. 机械重大装备寿命预测综述[J]. 机械工程学报, 2011, 47(11): 100-106
[3] 王奉涛, 苏文胜. 滚动轴承故障诊断与寿命预测[M]. 北京: 科学出版社, 2018
[4] LEE J, WU F J, ZHAO W Y, et al. Prognostics and health management design for rotary machinery systems-Reviews, methodology and applications[J]. Mechanical Systems and Signal Processing, 2014, 42(1-2): 314-334
[5] XIA T B, DONG Y F, XIAO L, et al. Recent advances in prognostics and health management for advanced manufacturing paradigms[J]. Reliability Engineering & System Safety, 2018, 178: 255-268
[6] 宋博, 祝青钰, 曾照洋. PHM技术在航空结构疲劳寿命预测中的应用[J]. 机械强度, 2017, 39(2): 435-440
[7] 年夫顺. 关于故障预测与健康管理技术的几点认识[J]. 仪器仪表学报, 2018, 39(8): 1-14
[8] 刘小峰, 柏林, 秦树人. 基于瞬时转速的变窗STFT变换[J]. 振动与冲击, 2010, 29(4): 27-29
[9] LI B, ZHANG P L, MI S S, et al. An adaptive morphological gradient lifting wavelet for detecting bearing defects[J]. Mechanical Systems and Signal Processing, 2012, 29(9): 415-427
[10] 赵磊, 夏均忠, 王虎, 等. 经验模式分解在滚动轴承故障诊断中的应用[J]. 军事交通学院学报, 2016, 18(9): 49-53
[11] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]. Proceedings of the Royal Society of London, A, 1998, 454(1971): 903-995.
[12] 时培明, 丁雪娟, 李庚, 等. 一种EMD改进方法及其在旋转机械故障诊断中的应用[J]. 振动与冲击, 2013, 32(4): 185-190
[13] 张超, 陈建军, 徐亚兰. 基于EMD分解和奇异值差分谱理论的轴承故障诊断方法[J]. 振动工程学报, 2011, 24(5): 539-545
[14] 庄哲, 陈星, 施莹, 等. 基于IMF-SVD包络谱法的轮对轴承故障检测方法研究[J]. 中国测试, 2017, 43(6): 93-98
[15] WU Z, HUANG N E. Ensemble empirical mode decomposition: a noise assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41
[16] 施莹, 庄哲, 林建辉. 基于EEMD排列熵的高速列车轮对轴承故障诊断方法[J]. 中国测试, 2017, 43(11): 89-95
[17] 雷亚国, 孔德同, 李乃鹏, 等. 自适应总体平均经验模式分解及其在行星齿轮箱故障检测中的应用[J]. 机械工程学报, 2014, 50(3): 64-70
[18] 王凤利, 邢辉, 段树林, 等. OEEMD与Teager能量算子结合的轴承故障诊断[J]. 振动. 测试与诊断, 2018, 38(1): 87-91
[19] TORRES M E, COLOMINAS M A, SCHLOTTHAUERG, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]. IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP-11). United States: Institute of Electrical and Electronics Engineers Inc, 2011: 4144-4147.
[20] 黄慧杰, 孙百祎, 任学平, 等. 基于CEEMDAN和1.5维谱的滚动轴承早期故障诊断方法[J]. 中国测试, 2019, 45(2): 151-156
[21] COLOMINAS M A, SCHLOTTHAUER G, TORRES M E. Improved complete ensemble EMD: A suitable tool for biomedical signal processing[J]. Biomedical Signal Processing and Control, 2014, 14: 19-29
[22] ZHAO L, ZHANG Y X, ZHU D C. Feature extraction for rolling element bearing weak fault based on MOMEDA and ICEEMDAN[J]. Journal of Vibroengineering, 2018, 20(6): 2352-2362
[23] SAWALHI N, RANDALL R B, ENDO H. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis[J]. Mechanical Systems and Signal Processing, 2007, 21(6): 2616-2633
[24] 刘尚坤, 唐贵基. 自适应MED结合EMD诊断滚动轴承早期故障[J]. 噪声与振动控制, 2015, 35(6): 160-162
[25] 张丹, 隋文涛. MED方法及在滚动轴承故障诊断中的应用[J]. 机床与液压, 2014, 42(23): 185-187
[26] MCDONALD G L, ZHAO Q, ZUO M J. Maximum correlated kurtosis deconvolution and application on gear tooth chip fault detection[J]. Mechanical Systems and Signal Processing, 2012, 33: 237-255
[27] 吕中亮, 汤宝平, 周忆, 等. 基于网格搜索法优化最大相关峭度反卷积的滚动轴承早期故障诊断方法[J]. 振动与冲击, 2016, 35(15): 30-34
[28] 钟先友, 赵春华, 陈保家, 等. 基于MCKD和重分配小波尺度谱的旋转机械复合故障诊断研究[J]. 振动与冲击, 2015, 34(07): 156-161
[29] MCDONALD G L, ZHAO Q. Multipoint optimal minimum entropy deconvolution and convolution fix: application to vibration fault detection[J]. Mechanical Systems and Signal Processing, 2017, 82: 461-477
[30] CHEN X Y, ZHOU J Z, XIAO H. Fault diagnosis based on comprehensive geometric characteristic and probability neural network[J]. Applied Mathematics and Computation, 2014, 230: 542-554
[31] 张玉学, 潘宏侠, 安邦. 基于EEMD与FCM聚类的自动机故障诊断[J]. 中国测试, 2017, 43(3): 106-110
[32] GRYLLIAS K C, ANTONIADIS I A. A support vector machine approach based on physical model training for rolling element bearing fault detection in industrial environments[J]. Engineering Applications of Artificial Intelligence, 2012, 25(2): 326-344
[33] ZARINBAL M, FAZEL Z M, TURKSEN I B. Relative entropy fuzzy c-means clustering[J]. Information Sciences, 2014, 260: 74-97
[34] COKAK E, ARSLAN A. A new training method for support vector machines: Clustering k-NN support vector machines[J]. Expert Systems with Applications, 2008, 35(3): 564-568
[35] BIN G F, GAO J J, LI X J, et al. Early fault diagnosis of rotating machinery based on wavelet packets Empirical mode decomposition feature extraction and neural network[J]. Mechanical Systems and Signal Processing, 2012, 27: 696-711
[36] WANG C Q, ZHOU J Z, QING H. Fault diagnosis based on pulse coupled neural network and pobability neural network[J]. Expert Systems with Applications, 2011, 38(11): 14307-14313
[37] SPEEHT D F. Probabilistic neural networks[J]. Neural Networks, 1990, 3(1): 109-118
[38] KUSY M, KOWSLSK P A. Weighted probabilistic neural network[J]. Information Sciences, 2018, 430-431: 65-76
[39] ZHU H L, LU L X, YAO J X, et al. Fault diagnosis approach for photovoltaic arrays based on unsupervised sample clustering and probabilistic neural network model[J]. Solar Energy, 2018, 176: 395-405
[40] WOZNIAK M, POLAP D, CAPIZZI G, et al. Small lung nodules detection based on local variance analysis and probabilistic neural network[J]. Computer Methods and Programs in Biomedicine, 2018, 161: 173-180
[41] LIU J X, WEN X B, YUAN L M. A robust approach of watermarking in contourlet domain based on probabilistic neural network[J]. Multimedia Tools and Application, 2017, 76(22): 24009-24026
[42] ZHAO Z Z, XU Q S, JIA M P. Improved shuffled frog leaping algorithm-based BP neural network and its application in bearing early fault diagnosis[J]. Neural Computing & Applications, 2015, 27(2): 375-385
[43] 冯玉芳, 卢厚清, 殷宏, 等. 基于BP神经网络的故障诊断模型研究[J]. 计算机工程与应用, 2019, 55(6): 24-30
[44] ZHANG Q, GAO J W, DONG H H. WPD and DE/BBO-RBFNN for solution of rolling bearing fault diagnosis[J]. Neurocomputing, 2018, 312: 27-33
[45] 李善, 谭继文, 俞昆. 神经网络和改进D-S证据理论相结合的滚动轴承复合故障诊断研究[J]. 机床与液压, 2018, 46(1): 153-157
[46] 胡义凡. 基于振动信号的航空发动机主轴轴承可靠性分析[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[47] 张一朦. 基于粗糙集与模糊神经网络的滚动轴承故障诊断研究[D]. 大连: 大连交通大学, 2018.
[48] PANDYA D H, UPADHYAY S H, S.P. Harsha Fault diagnosis of rolling element bearing by using multinomial logistic regression and wavelet packet transform[J]. Soft Computing, 2013, 18(2): 255-266
[49] 王晶晶. 基于LR和SVDD的滚动轴承故障识别方法研究[D]. 沈阳: 沈阳理工大学, 2017.
[50] 梁超, 路鹏, 郜宁, 等. 基于LPP的转子振动故障特征提取方法[J]. 振动工程学报, 2018, 31(3): 539-544
[51] ZHANG S, ZHANG Y, LI L, et al. An effective health indicator for rolling elements bearing based on data space occupancy[J]. Structural Health Monitoring, 2018, 17(1): 3-14
[52] AMARNATH M, SUGUMARAN V, HEMANTHA K. Exploiting sound signals for fault diagnosis of bearings using decision tree[J]. Measurement, 2013, 46(3): 1250-1256
[53] BOUMAHDI B, DRON J P, RECHAK S, et al. On the extraction of rules in the identification of bearing defects in rotating machinery using decision tree[J]. Expert Systems with Applications, 2010, 37(8): 5887-5894
[54] PATEL R K, GIRI V K. Feature selection and classification of mechanical fault of an induction motor using random forest classifier[J]. Perspectives in Science, 2016, 8: 334-337
[55] SEERA M, DENNIS W, NANDI A K. Classification of ball bearing faults using a hybrid intelligent model[J]. Applied Soft Computing, 2017, 57: 427-435
[56] XIANG Z, ZHANG X, ZHANG W, et al. Fault diagnosis of rolling bearing under fluctuating speed and variable load based on TCO Spectrum and Stacking Auto-encoder[J]. Measurement, 2019, 138: 162-174
[57] 李松柏, 康子剑, 陶洁. 基于信息融合与堆栈降噪自编码的齿轮故障诊断[J]. 振动与冲击, 2019, 38(5): 216-221
[58] LIU H, ZHOU J Z, Y . Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders[J]. ISA Transactions, 2018, 77: 167-178
[59] YANG R, HUANG M J, LU Q D, et al. Rotating machinery fault diagnosis using long-short-term memory recurrent neural network[J]. IFAC-PapersOnLine, 2018, 51(24): 228-232
[60] SHAO H D, JIANG H K, LI X Q, et al. Rolling bearing fault detection using continuous deep belief network with locally linear embedding[J]. Computers in Industry, 2018, 96: 27-39
[61] SHAO H D, JIANG H K, ZHANG H Z, et al. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing[J]. Mechanical Systems and Signal Processing, 2018, 100: 743-765
[62] ZHAO D Z, WANG T Y, CHU F L. Deep convolutional neural network based planet bearing fault classification[J]. Computers in Industry, 2019, 107: 59-66
[63] HUANG W Y, CHENG J S, YANG Y, et al. An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis[J]. Neurocomputing, 2019, 359: 77-92
[64] CUBILLO A, PERINPANAYAGAM S, ESPERON M. A review of physics-based models in prognostics: Application to gears and bearings of rotating machinery[J]. Advances in Mechanical Engineering, 2016, 8(8): 1-21
[65] AN D, CHOU J H, KIM N H. A comparison study of methods for parameter estimation in the physics-based prognostics[C]. 53rd AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. United States: American Institute of Aeronautics and Astronautics, 2012: 1-13.
[66] EI I, JANTUNEN E. A summary of fault modelling and predictive health monitoring of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2015, 60-61: 252-272
[67] 钱宇宁. 机械系统旋转部件退化跟踪与故障预测方法研究[D]. 南京: 东南大学, 2015.
[68] LI Y, KURFESS T R, LIANG S Y. Stochastic prognostics for rolling element bearings[J]. Mechanical Systems and Signal Processing, 2000, 14(5): 747-762
[69] ORSAGH R F, SHELDON J, KLENKE C J. Prognostics/diagnostics for gas turbine engine bearings[C]. Proceedings of the ASME Turbo Expo. United States: American Society of Mechanical Engineers(ASME), 2003: 159-167.
[70] QIU J, SETH B B, LIANG S Y, et al. Damage mechanics approach for bearing lifetime prognostics[J]. Mechanical Systems and Signal Processing, 2002, 16(5): 817-829
[71] 徐东, 徐永成, 陈循, 等. 基于临界曲面的改进Paris定律球轴承疲劳寿命预测方法[J]. 机械工程学报, 2011, 47(2): 51-57