您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>一种高电压环境下的二维微位移测量系统研制

一种高电压环境下的二维微位移测量系统研制

2548    2019-12-30

免费

全文售价

作者:张帅1, 缪东晶2, 李建双2, 孔明1, 郭天太1, 郑继辉1

作者单位:1. 中国计量大学计量测试工程学院, 浙江 杭州 310018;
2. 中国计量科学研究院, 北京 100029


关键词:计量学;二维微位移测量;图像处理;像素标定


摘要:

高压电容器高低压电极之间不同轴,在通电状态下高低压电极间会产生相对位移,影响电容电压系数。为准确测量在高电压环境下高、低压电极之间的相对位移,研制一种基于微结构特征与数字图像序列分析相结合的二维微位移测量系统。该系统由标片、工业相机、镜头、环形光源、无线通信模块、微型电脑等部分组成。通过激光干涉仪对标片上圆心距离进行精确标定,各方向标定系数分散性标准差为2.16×10-4 μm/像素,再通过圆心距离计算测量系统每个像素代表的长度值,采用这种方法可以将系统的测量结果溯源至激光波长。通过对系统精度的实验验证,在[0 mm, 8 mm]测量范围内,所研制系统在二维方向的准确度优于4.9 μm。结果表明,该系统满足高压电容器高低压电极之间位移测量精度要求。


Development of a two-dimensional micro-displacement measuring system in high voltage environment
ZHANG Shuai1, MIAO Dongjing2, LI Jianshuang2, KONG Ming1, GUO Tiantai1, ZHENG Jihui1
1. Collage of Metrology & Measurement Engineering, China Jiliang University, Hangzhou 310018, China;
2. National Institute of Metrology, Beijing 100029, China
Abstract: The high-voltage capacitors have different axes between the high and low voltage electrodes. When the power is on, the relative displacement of the high and low voltage electrodes is generated, which affects the capacitance voltage coefficient. In order to accurately measure the relative displacement between high and low voltage electrodes in high voltage environment, a two-dimensional micro-displacement measurement system based on the combination of microstructure features and digital image sequence analysis was developed. The system consists of a standard, an industrial camera, a lens, a ring light source, a wireless communication module, a microcomputer, and the like. The center distance on the target is accurately calibrated by laser interferometer. The standard deviation of dispersion coefficient in each direction is 2.16×10-4 μm/pixel, and the length value of each pixel of the measurement system is calculated by the center distance. The method can trace the measurement results of the system to the laser wavelength. Through the experimental verification of the system accuracy, the accuracy of the developed system in the two-dimensional direction is better than 4.9 μm in the measurement range of[0 mm, 8 mm]. The results show that the accuracy requirements of displacement measurement between high and low voltage electrodes of high voltage capacitors are met.
Keywords: metrology;two-dimensional micro displacement measurement;image processing;pixel calibration
2019, 45(12):90-95  收稿日期: 2018-11-29;收到修改稿日期: 2019-04-01
基金项目: 国家质量基础的共性技术研究与应用专项(2017YFF0204901);中国计量科学研究院基本科研业务项目(24-AKY1701)
作者简介: 张帅(1996-),男,山东泰安市人,硕士研究生,专业方向为大空间位姿测量
参考文献
[1] 葛朋祥, 叶沛, 李桂华. 基于遗传算法的数字图像相关法在微位移测量中的应用[J]. 光学学报, 2018, 38(6):198-203
[2] 秦齐, 刘艳, 刘欢欢. 图像处理在光纤光斑微位移传感中的应用[J]. 红外与激光工程, 2018, 47(10):247-253
[3] 周年强, 刘傲. 基于拉线式位移计的空间位移测量系统研制[J]. 中国测试, 2017, 43(1):84-88
[4] DONG M G, LI H S, MING W. Micro-displacement reconstruction using a laser self-mixing grating interferometer with multiple-diffraction[J]. OpticsExpress, 2017, 25(25):31394-31406
[5] 马浩慧. 基于激光干涉测长的线纹检测技术[D]. 天津:天津大学, 2012.
[6] PENG K, LIU X K, CHEN Z, et al. Sensing mechanism and error analysis of a capacitive long-range displacement nanometer sensor based on time grating[J]. IEEE Sensors Journal, 2017, 17(6):1596-1607
[7] 郑志月, 施玉书, 高思田, 等. 高精度电容式位移传感器校准方法的研究[J]. 计量学报, 2015, 36(1):14-18
[8] 马自军, 杨双莲. 激光位移传感器测量原理及应用研究展望[J]. 甘肃科技, 2012, 28(2):77-78
[9] ZHAO J X, SHEN J N, MAO L Y. An image-based laser triangulation width model applied in sawn lumber's external face measurement[J]. BioResources, 2018, 13(4):7371-7380
[10] 赵鹏, 张艳, 张小亚, 等. 激光漫反射测距回波信号在线提取方法[J]. 光学学报, 2015, 35(10):280-288
[11] 钱义先, 洪雪婷, 金伟民, 等. 光学相关的双CCD成像系统图像运动位移测量[J]. 中国激光, 2013, 40(7):160-165
[12] 张华俊. 基于图像特征匹配技术的数字图像相关法研究[D]. 合肥:安徽大学, 2014.
[13] ASSAF Y, SLAVA K, YAEL H. Nanoscale displacement measurement of electrostatically actuated micro-devices using optical microscopy and digital image correlation[J]. Sensors & Actuators A:Physical, 2010, 162(1):1-7
[14] 闫海涛, 孟伟东, 赵晓艳, 等. 基于干涉条纹图像对比法测量微位移[J]. 应用光学, 2012, 33(6):1069-1072
[15] HUANG W, MA C, CHEN Y. Displacement measurement with nanoscale resolution using a coded micro-mark and digital image correlation[J]. Optical Engineering, 2014, 53(12):12403