您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于非线性超声导波的高压电缆瓷套式终端液位检测

基于非线性超声导波的高压电缆瓷套式终端液位检测

3450    2019-01-30

免费

全文售价

作者:周孜毅1, 祁宏昌2, 刘远1, 黄嘉盛2, 吴倩2, 洪晓斌1

作者单位:1. 华南理工大学机械与汽车工程学院, 广东 广州 510641;
2. 广州供电局输电管理所, 广东 广州 510310


关键词:非线性超声导波;高压电缆;瓷套式终端;液位检测


摘要:

瓷套式高压电缆终端内部油液泄漏问题是关系到高压电缆正常安全运行的关键因素,该文提出一种基于非线性超声导波的液位检测方法。首先,分析非线性超声导波检测机理并确定激励频率;其次,采用离散傅里叶变换将信号转换为频域并计算不同液位高度的非线性系数;最后,搭建瓷套管液位检测平台并进行系列实验。实验结果表明:由于瓷套管内油液的存在,接收信号的强度会出现明显下降;非线性系数随着液位高度的增加也不断增加,可以有效评估瓷套管内液位高度。


Liquid level detection of high voltage cable porcelain termination based on nonlinear ultrasonic guided wave
ZHOU Ziyi1, QI Hongchang2, LIU Yuan1, HUANG Jiasheng2, WU Qian2, HONG Xiaobin1
1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China;
2. Transmission Management Institute of Guangzhou Power Supply Bureau, Guangzhou 510310, China
Abstract: Leakage of porcelain termination is a key factor related to the safe operation of high voltage cable. This paper developed a nonlinear ultrasonic guided wave liquid level detection method for the porcelain termination. First, the mechanism of nonlinear ultrasonic guided wave was analyzed and the excitation frequency was determined. Then, discrete Fourier transformation was used to transform the signal into frequency domain and the nonlinear coefficient of different liquid level was calculated. Finally, the experimental setup was established and a series of liquid level detection experiment were carried out. The result shows that because the presence of silicone oil in the porcelain termination, the intensity of the received signal will decrease significantly. The nonlinear coefficient increases with the liquid level which could use to evaluate the height of liquid.
Keywords: nonlinear ultrasonic guided wave;high voltage cable;porcelain termination;liquid level detection
2019, 45(1):134-138  收稿日期: 2018-07-25;收到修改稿日期: 2018-09-13
基金项目: 中国南方电网有限责任公司科技项目(GZM2015-1-0011)
作者简介: 周孜毅(1993-),男,广东广州市人,硕士研究生,专业方向为仪器仪表工程
参考文献
[1] 程明, 马崇, 陈韶瑜, 等. 基于超声波的变电站充油瓷套油位检测方法[J]. 河北电力技术, 2014, 33(6):41-42
[2] 莫润阳, 牛海清, 郭然, 等. 瓷套式电缆终端油位的超声检测[J]. 西北大学学报(自然科学版), 2015, 45(5):745-748
[3] 何存富, 怀保玲, 杜婷, 等. 基于兰姆波的大型罐体液位定点检测方法[J]. 机械工程学报, 2007, 43(6):99-104
[4] 徐鸿, 郭鹏, 田振华, 等. 非浸入式超声导波液位测量方法研究[J]. 仪器仪表学报, 2017, 38(5):1150-1158
[5] 李明亮, 邓明晰, 高广健. 复合圆管界面特性对周向超声导波二次谐波发生效应的影响分析[J]. 物理学报, 2016, 65(19):158-167
[6] 焦敬品, 樊仲祥, 吴斌, 等. 闭合裂纹非共线混频超声检测试验研究[J]. 声学学报, 2017(2):205-213
[7] HONG X, LIU Y, LIUFU Y, et al. Debonding detection in hidden frame supported glass curtain walls using the nonlinear ultrasonic modulation method with piezoceramic transducers[J]. Sensors, 2018, 18(7):2094
[8] 冯伟, 万楚豪, 刘斌, 等. 7075铝合金疲劳损伤的多点快速非线性超声检测[J]. 机械工程学报, 2015, 54(10):23-28
[9] 陈小佳, 沈成武, LAURNCE L J. 一种基于非线性超声谐波幅值比的微裂缝探测方法[J]. 武汉大学学报(工学版), 2007, 40(6):61-65
[10] 李海洋, 高翠翠, 史慧杨, 等. Q235钢疲劳损伤的非线性Rayleigh波检测技术研究[J]. 中国测试, 2018, 44(4):37-41
[11] 赵珊珊, 邓明晰, 项延训, 等. 超声Lamb波二次谐波发生效率分析与模式选择[J]. 声学学报, 2017(3):290-296
[12] LEE T H, CHOI I H, JHANG K Y. The nonlinearity of guided wave in plate[J]. Modern Physics Letters B, 2008, 22(11):1135-1140