您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于压电自供电的无线传感网络网关节点设计

基于压电自供电的无线传感网络网关节点设计

2792    2016-10-08

免费

全文售价

作者:何宏1, 高艳囡1, 张志宏1,2

作者单位:1. 天津理工大学自动化学院 天津市复杂系统控制理论及应用重点实验室, 天津 300384;
2. 天津广播电视台传输发射部, 天津 300072


关键词:无线传感网络;LTC3588-1;压电自供电;CC2530


摘要:

针对无线传感网络中网关节点数据传输量大、能耗高,导致其难以长时间工作的问题,基于ZigBee、GPRS、压电电源设计自供电无线传感网络网关节点。首先,采用ZigBee最小系统CC2530和GPRS模块搭建网关节点硬件结构,CC2530模块实现处理、存储接收数据,GPRS模块实现远距离传输数据;其次,采用压电陶瓷片和能量转换芯片LTC3588-1设计压电自供电电源,给网关节点供电。实验证明,压电陶瓷片在固定振动频率下,输出电压为70 V、电流为19 mA;当有1,2道墙阻隔时丢包率分别低于5%、10%。基于压电自供电的无线传感网络网关节点具有无源、丢包率低、可靠性强等特点。


Design of wireless sensor network gateway node based on piezoelectric self-powered

HE Hong1, GAO Yannan1, ZHANG Zhihong1,2

1. Tianjin Key Laboratory for Control Theory & Applications in Complicated Systems, School of Automation, Tianjin University of Technology, Tianjin 300384, China;
2. Transmission and Launch Department, Tianjin Radio and TV Station, Tianjin 300072, China

Abstract: In allusion to the problem that high data transmission speed and energy consumption of wireless sensor network (WSN) undermine WSN's long-time operation, self-powered network gateway node is designed based on ZigBee, GPRS, and piezoelectric power supply. First, network gateway node hardware structure consists of ZigBee minimum system CC2530 and GPRS module. Functions of receiving, processing and storing data are implemented by CC2530 module, and GPRS module realizes long distance transmission. Second, piezoelectric ceramic chip and energy conversion chip LTC3588-1 are used for designing piezoelectric self power supply for providing power to the gateway node. Experiment results show that under fixed vibration frequency, output voltage of the piezoelectric ceramic chip is 70 V and current is 19mA. In case of blocking with one or two walls, packet loss rate is lower than 5% or 10% respectively. WSN gateway node based on piezoelectric self power supply is featured with passive property, low packet loss rate and high reliability.

Keywords: wireless sensor network;LTC3588-1;piezoelectric power supply;CC2530

2016, 42(9): 67-71  收稿日期: 2016-5-18;收到修改稿日期: 2016-6-10

基金项目: 天津市科技支撑重大科技工程专项基金(14ZCDGSF00028);天津市高等学校创新团队培养计划(TD12-5015)

作者简介: 何宏(1960-),女,教授,研究方向为无线传感网络技术、检测技术与自动化装置。

参考文献

[1] 徐月华,刘桂雄. 基于Pyxos技术的楼宇传感器网络节点设计[J]. 中国测试,2014,40(4):71-74.
[2] TORFS T, STERKEN T, BREBELS S, et al. Low power wireless sensor network for builing monitoring[J]. Sensors Journal,IEEE,2013,13(3):909-915.
[3] ERTURK A, INMAN D J. Piezoelectric Eenergy harvesting[M]. Wileycom,2011:3-39.
[4] CHEN C S, LEE D S. Energy saving effects of wireless sensor networks:A case study of convenience stores in Taiwan[J]. Sensors,2011(11):2013-2034.
[5] 张晓平,刘桂雄,何学文. 消除WSN目标功率影响的信号强度差LSSVR定位法[J]. 哈尔滨工程大学学报,2009(12):1414-1419.
[6] 邬厚民. 无线传感网络中能量和距离改良的LEACH分簇算法[J]. 中国测试,2012(5):62-65.
[7] 刘焕强,顾晓峰,何磊. 基于ZigBee网络的多网关传输系统设计[J]. 江南大学学报(自然科学版),2013,12(3):262-267.
[8] 姜世芬,刘桂雄,吴国光. 基于IEEE1451.5的ZigBee智能传感器即插即用性能优化[J]. 中国测试,2013(4):76-80.
[9] 鲍贤亮,陈年海,徐一凡,等. 基于ZigBee技术的无线脉搏传感网[J]. 电子测量技术,2015,38(2):105-108.
[10] 孟庆春,陈光柱. 自供电无线传感网络节点设计[J]. 仪表技术与传感器,2012(7):102-104.
[11] 李从健,李兵,孟庆虎. 拱型压电能量收集器发电性能研究[J]. 仪器仪表学报,2015(36):86-91.
[12] 边义祥,杨成华. 基于压电材料的振动能量回收技术现状综述[J]. 压电与声光,2011,33(4):612-622.
[13] VULLERS R J M, VAN SCHAIJK R, DOMS I, et al. Micropower energy harvesting[J]. Solid-State Electronics,2009,53(7):684-693.
[14] KIM M, DUGUNDJI J, WARDLE B L. Efficiency of piezoelectric mechanical vibration energy harvesting[J]. Smart Materials & Structures,2015,24(5):112-116.