您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>预估补偿器柔性机械臂振动时滞控制

预估补偿器柔性机械臂振动时滞控制

2810    2016-10-08

免费

全文售价

作者:杜菲, 马天兵, 熊能, 张建君, 罗智

作者单位:安徽理工大学机械工程学院, 安徽 淮南 232001


关键词:LQG算法;Smith预估器;时滞补偿;振动控制


摘要:

为解决影响柔性机械臂振动主动控制系统稳定性和控制效果的时滞问题,在线性二次型高斯(liner quadratic Gauss,LQG)最优控制的基础上,提出应用Smith预估器进行时滞补偿,设计出针对LQG算法控制的时滞问题补偿策略,并根据Lyapunov方法进行新策略的稳定性证明,最后搭建柔性机械臂的振动主动控制系统,通过李沙育图形辨识出时滞常数,分别进行添加时滞补偿前后的LQG控制的对比实验。实验结果表明:时滞补偿后前机械臂前两阶模态振动抑制效果分别达到9.5 dB和8.1 dB,优于时滞补偿前LQG算法的控制效果。


Predictive compensator-based flexible manipulator vibration time-lag control

DU Fei, MA Tianbing, XIONG Neng, ZHANG Jianjun, LUO Zhi

College of Mechanical Engineering, Anhui University of Science and Technology, Huai'nan 232001, China

Abstract: In order to solve the time-lag problem undermining the stability and control of flexible manipulator active control system, on the basis of the linear quadratic Gauss(LQG) optimal control, application of Smith predictor is poposed to compensate the time-lag with the compensation strategy developed in allusion to the time-lag controlled by LQG algorithm. The stability of the new strategy is proved by Lyapunov method before setting up the flexible manipulator vibration active control system at length. By taking advantage of Lissajous Figure, the time-lag constant is identified, and comparative experiment on LQG control before and after the addition of time-lag compensation is carried out respectively. The experimental results show that the control effect can reach 9.5dB and 8.1dB respectively for the first two modes of flexible manipulator after using time-lag compensator, which outperforms the effect of the LQG control algorithm without applying the time-lag compensator.

Keywords: LQG algorithm;Smith predictor;time delay compensation;vibration control

2016, 42(9): 92-95  收稿日期: 2015-12-13;收到修改稿日期: 2016-1-26

基金项目: 国家自然科学基金项目(51305003);安徽省高校优秀青年人才基金重点资助项目(2012SQRL045ZD)

作者简介: 杜菲(1981-),女,安徽六安市人,副教授,硕士,主要从事振动控制方面研究。

参考文献

[1] 孙健,陈杰,刘国平. 时滞系统稳定性分析与应用[M]. 北京:科学出版社,2012:76-99.
[2] 刘曙光. 基于Internet的遥操作机器人系统控制研究[D].西安:西北工业大学,2006.
[3] 周烁,魏克湘,孟光. 频域加权的LQG振动主动控制实验研究[J]. 振动与冲击,2007(1):151-153.
[4] RIEDINGER P, VIVALDA J C. Dynamic output feedback for switched linear systems based on a LQG design[J]. Automatica,2015,54(8):235-245.
[5] LABANE C, ZEMALACHE M K. Aircraft control system using LQG and LQR controller with optimal estimation-kalman filter design[J]. Procedia Engineering,2014,80(2):245-257.
[6] 罗鑫源,杨世文. 基于AHP的车辆主动悬架LQG控制器设计[J]. 振动与冲击,2013,32(2):102-106.
[7] 闫光辉,关志伟,杜峰,等. 车辆主动悬架自适应LQG控制策略研究[J]. 机械科学与技术,2014,33(2):432-437.
[8] 陈宇杰. 时滞系统的Smith预估控制研究[D]. 杭州:浙江大学,2006.
[9] LUCA D C, SAVERIO M. Robust stability analysis of Smith predictor-based congestion control algorithmsfor computer networks[J]. Automatica,2011,47(8):1685-1692.
[10] 王宗利,林启荣,刘正兴. 压电智能梁的状态相关LQR振动控制[J]. 上海交通大学学报,2001,35(4):503-508.