您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>脉冲涡流热成像金属材料裂纹检测研究

脉冲涡流热成像金属材料裂纹检测研究

3192    2016-10-08

免费

全文售价

作者:邢晓军, 左宪章, 王建斌, 张玉华

作者单位:军械工程学院无人机工程系, 河北 石家庄 050003


关键词:金属材料;趋肤深度;涡流分布;热成像


摘要:

为分析不同激励条件下不同材料感应加热特性,采用有限元仿真软件分析铁磁性材料45#钢和非铁磁性材料不锈钢感应加热时的涡流分布和温度分布,发现45#钢趋肤深度很小,裂纹边沿感应电流密度较大;不锈钢趋肤深度受激励电流频率影响很大。随激励电流频率的增大,趋肤深度减小,裂纹边沿感应电流密度增大。涡流的分布和裂纹对热扩散的阻碍作用共同决定裂纹附近温度的分布,并通过实验对仿真结论进行验证,确定两种材料表面裂纹的最佳激励条件。


Study on the crack detection of metallic materials based on pulsed eddy current thermography

XING Xiaojun, ZUO Xianzhang, WANG Jianbin, ZHANG Yuhua

Department of UAV Engineering, Ordnance Engineering College, Shijiazhuang 050003, China

Abstract: The surface defect of metallic materials can be detected effectively and accurately by pulsed eddy current thermography. In order to analyze different induction heating characteristics of different materials under different excitation conditions, distribution of eddy current and temperature between magnetic and non-magnetic materials, that is, 45# steel and stainless steel, were compared. The result shows that, the surface depth of 45# steel is very small, the density of induced current in crack edge is substantial. The surface depth of stainless steel is influenced greatly by excitation frequency of the current. As frequency increases, the surface depth decreases and the density of current in crack edge increases. The temperature variation is determined by both the distribution of current and the crack's hindering for the thermal diffusion. The conclusions were experimentally verified, and the optimum excitation conditions to identify both materials' surface cracks were determined.

Keywords: metal materials;skin depth;distribution of eddy current;thermography

2016, 42(9): 139-144  收稿日期: 2015-11-23;收到修改稿日期: 2016-1-26

基金项目: 河北省自然科学基金(E2014506011)

作者简介: 邢晓军(1991-),女,山东德州市人,硕士研究生,专业方向为电磁无损检测。

参考文献

[1] WEEKES B, ALMOND D, CAWLEY P, et al. Eddy-current induced thermography-probability of detection study of small fatigue cracks in steel, titanium and nickel-based superalloy[J]. NDT&E International,2012(49):47-56.
[2] GOLDAMMER M, MOOSHOFER H, ROTHENFUSSER M, et al. Automated induction thermography of generator components[J]. Review of Quantitative Nondestructive Evaluation,2010(29):451-457.
[3] SEUNGHOON B, WILLIAM X, MARIA Q F, et al. Nondestructive corrosion detection in RC through integrated heat induction and IR thermography[J]. J Nondestruct Eval,2012(31):181-190.
[4] 曾金晶,仪向向,杨随先. 热成像无损检测技术比较研究[J].中国测试,2015,41(2):5-10.
[5] 左宪章,常东,钱苏敏,等. 脉冲涡流热成像裂纹检测的机理仿真分析[J]. 激光与红外,2012,42(9):998-1003.
[6] 孙晓莹,侯德鑫,叶树亮. 平行激励下脉冲涡流热成像响应规律的研究[J]. 激光与红外,2015,45(4):393-399.
[7] 周星涛,侯德鑫,叶树亮. 基于涡流锁相热成像的刹车片内部气泡检测[J]. 激光与红外,2015,45(7):800-804.
[8] 胡德洲,左宪章,王建斌,等. 脉冲涡流热成像缺陷检测图像的因子分析[J]. 红外技术,2014,36(12):1009-1015.
[9] 胡德洲,左宪章,李伟,等. 钢板表面腐蚀的脉冲涡流热成像检测研究[J]. 激光与红外,2015,45(2):144-149.
[10] OSWALD-TRANTA B. Thermo-inductive crack detection[J].Nondestructive Testing and Evaluation,2007,22(2-3):137-153.
[11] WALLY G, OSWALD-TRANTA B. The influence of crack shapes and geometries on the result of the thermo-inductive crack detection[C]//Proceedings of SPIE, the International Society for Optical Engineering. Society of Photo-Optical Instrumentation Engineers,2007:654111.1-654111.8.
[12] 胡德洲,左宪章,王建斌,等. 脉冲涡流热成像检测激励参数的优化[J]. 无损检测,2014,36(8):23-28.