您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>金属铀热氧化腐蚀的红外和拉曼光谱分析

金属铀热氧化腐蚀的红外和拉曼光谱分析

2172    2016-01-16

免费

全文售价

作者:仲敬荣, 肖洒, 褚明福, 肖吉群, 邹乐西

作者单位:中国工程物理研究院, 四川绵阳 621900


关键词:铀; 氧化; 腐蚀; 红外; 拉曼


摘要:

为了进一步认识金属铀环境腐蚀的规律,采用傅里叶变换红外和显微激光拉曼光谱技术,获得了金属铀与空气热氧化反应产物的红外和拉曼光谱图。实验结果表明,随着温度的升高,铀表面首先出现活性腐蚀亮斑,并逐渐积累长大,主要氧化产物UO2在260℃以上开始转化为U3O8。同时,200℃以上温度条件下,铀表面的热氧化腐蚀速率明显高于较低温度时的氧化反应。研究结果将为改善防腐措施、提高核燃料的安全可靠性提供有价值的参考信息。


Infrared and raman spectroscopy analysis of thermal oxidation corrosion of uranium

ZHONG Jing-rong, XIAO Sa, CHU Ming-fu, XIAO Ji-qun, ZOU Le-xi

China Academy of Engineering Physics, Mianyang 621900, China

Abstract: For finding out the rules of environmental corrosion of metal uranium, the thermal oxidation reaction of uranium with air was in-situ investigated by infrared and macro laser Raman spectroscopy technique. The experimental results show that some active corroded light spots appear in the surface of uranium at the beginning of heating, and they get together and grow up gradually when heated up under different temperature. The major corrosion product is uranium dioxide(UO2) that begins to change into triuranium octoxide(U3O8) above the temperature of 260℃. At the same time, the thermal oxidation corrosion rates in the surface of uranium at or above 200℃ are obviously faster than that at the lower temperature. These can provide some valuable reference information for improving anticorrosion measures and increasing safe reliability of nuclear fuels.

Keywords: Uranium; Oxidation; Corrosion; Infrared; Raman

2009, 35(2): 112-115  收稿日期: 2008-10-14;收到修改稿日期: 2008-8-1

基金项目: 中国工程物理研究院技术基金项目(20060863)

作者简介: 仲敬荣(1975-),女,河南光山县人,助理研究员,硕士,主要从事核燃料循环与材料研究。

参考文献

[1] Sunwoo J L, Anklam T, et al. Uranium alloy forming process research[R]. UCRL-ID-127172,1997.
[2] Zabieski C V, Levy M. Fracture toughness and stress corrosion resistance of U-0.75wt%Ti[R]. ARLTR-200,1993.
[3] Manner W L, Lioyd J A, Hanrahan R J. An examination of the initial oxidation of a uranium-base alloy(U-14.1%Nb) by O2 and D2O using surface-sensitive techniques[J]. Applied Surface Science,1999,150(4):73-88.
[4] Kelly J, William A L, Manner L. Surface characterization of oxidative corrosion of uranium-niobium alloys[R]. LA-UR-00-4808,2000.
[5] Nagelberg A S, Ottesen D K. Corrosion behavior of lean uranium-titanium alloys[R]. SAND80-8215,1980.
[6] Easewood D, Martin J B, Burggraf L W,et al. Photol uminescence and vibrational spectroscopic studies on weathered uranium oxides[J]. SPIE,1998,3534:487-495.
[7] Rorper D F, Chidambaram D, Halada G P, et al. Development of an environmentally friendly protective coating for the depleted uranium-0.75 wt.% titanium alloy Part IV:Vibrational spectroscopy of the coating[J]. Electrochimica Acta,2006,51(23):4815-4820.
[8] Palacios M L, Taylor S H. Characterization of uranium oxides using in Situ micro-Raman spectroscopy[J]. Appl. Spectrosc,2000,54(9):1372-1380.
[9] Maslar J E, Hurst W S, Bowers W J, et al. In-situ raman spectroscopic investigation of zirconium-niobium alloy corrosion under hydrothermal conditions[J]. J.Nucl. Mater.,2001,298(3):239-247.