您好,欢迎来到中国测试科技资讯平台!

首页> 数字期刊群 >本期导读>应用激光跟踪仪的数控机床空间精度检测方法

应用激光跟踪仪的数控机床空间精度检测方法

650    2023-01-05

免费

全文售价

作者:韩林1,2, 肖杰1,2, 何韬1,2, 石纯标1,2, 袁明记1,2

作者单位:1. 中国工程物理研究院机械制造工艺研究所,四川 绵阳 621900;
2. 国家机床产品质量检验检测中心(四川),四川 成都 610200


关键词:激光跟踪仪;机床空间精度;秩亏自由网平差;蒙特卡洛方法;测量不确定度


摘要:

为实现数控机床空间精度快速、高精度测量,提出一种应用激光跟踪仪的数控机床空间精度快速求解方法。首先,分析激光跟踪仪测量数控机床空间精度的基本原理,建立激光跟踪仪测量数控机床空间精度的数学模型;其次,推导测量方程的线性化矩阵形式,基于秩亏自由网平差约束条件,实现数控机床空间精度的快速求解;并考虑激光跟踪仪测长误差引起的不确定度来源,基于蒙特卡洛方法进行测量不确定度评定;最后,在机床运动传递链为工件-Y轴-X轴-Z轴-刀具型式的三轴数控机床上开展数控机床空间精度测量与不确定度评定和验证试验。结果表明:该三轴数控机床空间精度为31.6 μm,标准不确定度为10.2 μm;与激光干涉仪定位偏差检测结果相比XYZ轴线最大相差6.4 μm,测量不确定度与多次重复测量结果标准差相比最大相差2.1 μm,验证空间精度测量和不确定度评定方法的有效性。


Measurement method of volumetric accuracy of CNC machine tools using laser tracker
HAN Lin1,2, XIAO Jie1,2, HE Tao1,2, SHI Chunbiao1,2, YUAN Mingji1,2
1. China Academy of Engineering Physics, Institute of Machinery Manufacturing Technology, Mianyang 621900, China;
2. National Machine Tool Production Quality Inspection and Testing Center (Sichuan), Chengdu 610200, China
Abstract: To implement the rapid and high-accuracy measurement of volumetric accuracy of CNC machine tools, a novel measurement method of volumetric accuracy of CNC machine tool using laser tracker is proposed. Firstly, the measurement principle of volumetric accuracy of CNC machine tools using a single laser tracker is analyzed, and the mathematical model is established. Then, the linearization matrix of the measurement equations is derived. Based on the constraints of rank-deficiency free network adjustment, the volumetric accuracy of CNC machine tool is determined with high efficiency. Considering the uncertainty caused by the length measurement error of laser tracker, the Monte Carlo method is adopted to evaluate the measurement uncertainty of volumetric accuracy. Finally, the volumetric accuracy measurement and uncertainty evaluation and verification experiments are carried out on a three-axis CNC machine tool of which the kinematic chain is Workpiece-Y axis-X axis-Z axis-Tool, and the comparison experiments with the positioning deviation measured by laser interferometer and the repeated measurement results are implemented. The experimental results show that the volumetric accuracy of the CNC machine tool is 31.6 μm and the standard uncertainty is 10.2 μm. The maximum difference of positioning deviation of X, Y and Z axes is 6.4 μm compared with the results measured by laser interferometer. And the maximum difference between the measurement uncertainty and the standard deviation of repeated measurement results is 2.1 μm. The comparison experiments verify the effectiveness of the volumetric accuracy measurement and measurement uncertainty evaluation method.
Keywords: laser tracker;volumetric accuracy of machine tool;rank-deficiency free network adjustment; Monte Carlo method;measurement uncertainty
2022, 48(12):52-59  收稿日期: 2022-06-16;收到修改稿日期: 2022-07-16
基金项目: 国防科工局技术基础科研项目(J0067-1922-FJC);四川省重大科技专项项目(2020ZDZX0003)
作者简介: 韩林(1994-),男,河北邢台市人,工程师,硕士,主要从事机床装备检测评价技术研究
参考文献
[1] Test code for machine tools - Part 1: Geometric accuracy of machines operating under no-load or quasi-static conditions: ISO 230-1: 2012[S]. Switzerland: International Organization for Standardization, 2012.
[2] 李国龙, 陶小会, 徐凯, 等. 数控机床转台位置相关几何误差的快速测量与辨识[J]. 吉林大学学报(工学版), 2021, 51(2): 458-467
[3] LI J, MEI B, SHUAI C, et al. A volumetric positioning error compensation method for five-axis machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(3): 3979-3989
[4] 米良, 杨川贵, 刘兴宝, 等. 基于微动刀架的超精密机床加工误差在位补偿技术[J]. 吉林大学学报(工学版), 2020, 50(6): 2019-2027
[5] BALSAMO A, COLONNETTI G, FRANKE M, et al. Results of the CIRP-euromet intercomparison of ball plate-based techniques for determining CMM parametric errors[J]. CIRP Annals - Manufacturing Technology, 1997, 46(1): 463-466
[6] 张雷, 赵帼娟, 卢磊, 等. 四轴抛光平台综合误差建模及分析[J]. 吉林大学学报(工学版), 2014, 44(6): 1676-1683
[7] 李杰, 谢福贵, 刘辛军, 等. 五轴数控机床空间定位精度改善方法研究现状[J]. 机械工程学报, 2017, 53(7): 113-128
[8] 董成举, 刘文威, 李小兵, 等. 六轴工业机器人工作空间分析及区域性能研究[J]. 中国测试, 2020, 46(5): 154-160
[9] MURALIKRISHNAN B, PHILLIPS S, SAWYER D. Laser trackers for large scale dimensional metrology: A review[J]. Precision Engineering, 2015, 44: 13-28
[10] 李龙涛, 蔡兴. 视觉定位机器人焊接引导方法[J]. 中国测试, 2021, 47(11): 59-63
[11] AGUADO S, SAMPER D, SANTOLARIA J, AGUILAR J J. Identification strategy of error parameter in volumetric error compensation of machine tool based on laser tracker measurements[J]. International Journal of Machine Tools and Manufacture, 2012, 53: 160-169
[12] UMETSU K, FURUTNANI R, OSAWA S, et al. Geometric calibration of a coordinate measuring machine using a laser tracking system[J]. Measurement Science & Technology, 2005, 16(12): 2466-2472
[13] SCHWENKE H, SCHMITT R, JATZKOWSKI P, et al. On-the-fly calibration of linear and rotary axes of machine tools and CMMs using a tracking interferometer[J]. CIRP Annals - Manufacturing Technology, 2009, 58(1): 477-480
[14] IBARAKI S, NAGAE K, SATO G. Proposal of "open-loop" tracking interferometer for machine tool volumetric error measurement[J]. CIRP Annals - Manufacturing Technology, 2014, 63(1): 501-504
[15] WANG J, GUO J. Research on the base station calibration of multi-station and time-sharing measurement based on hybrid genetic algorithm[J]. Measurement, 2016, 94: 139-148
[16] MUTILBA U, JA YAGÜE-FABRA, GOMEZ-ACEDO E, et al. Integrated multilateration for machine tool automatic verification[J]. CIRP Annals - Manufacturing Technology, 2018, 67(1): 555-558
[17] 韩林, 米良, 刘兴宝, 等. 应用激光跟踪仪的三坐标测量机几何误差检测方法[J]. 工程科学与术, 2021, 53(3): 159-165
[18] 黄维彬. 近代平差理论及其应用[M]. 北京: 解放军出版社, 1992.
[19] 陈怀艳, 曹芸, 韩洁. 基于蒙特卡罗法的测量不确定度评定[J]. 电子测量与仪器学报, 2011, 25(4): 301-308