您好,欢迎来到中国测试科技资讯平台!

首页> 数字期刊群 >本期导读>一种用于高光谱图像分类的空谱协同编码方法

一种用于高光谱图像分类的空谱协同编码方法

1367    2023-01-05

免费

全文售价

作者:杨蕴睿1, 郑东文2

作者单位:1. 郑州工商学院工学院,河南 郑州 451400;
2. 河南科技大学信息工程学院,河南 洛阳 471023


关键词:高光谱遥感图像;高光谱图像分类;加权滤波;空间光谱信息


摘要:

针对现有基于协同表示的分类算法对于高光谱遥感图像的空间光谱信息利用不充分而造成较低分类精度的问题,该文提出一种空谱协同编码方法用于高光谱图像分类。算法首先利用空间光谱信息对图像进行加权滤波。随后,对于协同编码模型,将空间光谱信息转化为空间光谱权重以对模型进行正则约束。在Indian Pines和University of Pavia真实数据集上的实验结果表明提出的算法能分别获得98.82%和99.09%的总体精度。实验证明了所提出的算法对高光谱遥感图像进行分类的有效性。


Spatial-spectral collaborative coding for hyperspectral image classification
YANG Yunrui1, ZHENG Dongwen2
1. School of Computer Engineering, Zhengzhou Technology and Business University, Zhengzhou 451400, China;
2. College of Information Engineering, Henan University of Science and Technology, Louyang 471023, China
Abstract: Aiming at the problem that the existing classification algorithms based on collaborative representation do not make full use of the spatial spectral information of hyperspectral remote sensing images, resulting in low classification accuracy, a spatial spectral collaborative coding method is proposed for hyperspectral image classification. Firstly, the image is smoothed by spatial spectral weighted filtering method. Then, for the collaborative coding model, the spatial spectral information is transformed into spatial spectral weight to regularize the model. The experimental results on Indian Pines and University of Pavia real data sets show that the proposed algorithm can obtain 98.82% and 99.09% overall accuracy, respectively. Experiments show that the proposed algorithm is effective in classifying hyperspectral remote sensing images.
Keywords: hyperspectral remote sensing image;hyperspectral image classification;weighted filtering;spatial-spectral information
2022, 48(12):162-171  收稿日期: 2021-08-12;收到修改稿日期: 2021-11-08
基金项目: 国家自然科学基金(61801170)
作者简介: 杨蕴睿(1982-),女,河南郑州市人,讲师,硕士,研究方向为计算机技术
参考文献
[1] BIOUCAS-DIAS J M, PLAZA A, CAMPS-VALLS G, et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(2): 6-36
[2] GHAMISI P, PLAZA J, CHEN Y, et al. Advanced spectral classifiers for hyperspectral images: A review[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(1): 8-32
[3] MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability. 1967, 1(14): 281-297.
[4] BEEZDEK J C, EHRLICH R, FULL W. FCM: The fuzzy c-means clustering algorithm[J]. Computers and Geosciences, 1984, 10(2-3): 191-203
[5] ARCHIBALD R, FANN G. Feature selection and classification of hyperspectral images with support vector machines[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(4): 674-677
[6] TARABLKA Y, FAUVEL M, CHANUSSOT J, et al. SVM-and MRF-based method for accurate classification of hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 736-740
[7] CAMPS-VALLS G, GOMEZ-CHOVA L, MUNOZ-MARI J, et al. Composite kernels for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 93-97
[8] WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 31(2): 210-227
[9] CHEN Y, NASRABADI N M, TRAN T D. Hyperspectral image classification using dictionary-based sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3973-3985
[10] ZHANG L, YANG M, FENG X. Sparse representation or collaborative representation: Which helps face recognition? [C]//2011 International Conference on Computer Vision. IEEE, 2011: 471-478.
[11] LI W, TRAMEL E W, PRASAD S, et al. Nearest regularized subspace for hyperspectral classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(1): 477-489
[12] LI W, DU Q. Joint within-class collaborative representation for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2200-2208
[13] LI W, DU Q, ZHANG F, et al. Hyperspectral image classification by fusing collaborative and sparse representations[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9): 4178-4187
[14] LI W, ZHANG Y, LIU N, et al. Structure-aware collaborative representation for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 7246-7261
[15] JIANG J, CHEN C, YU Y, et al. Spatial-aware collaborative representation for hyperspectral remote sensing image classification[J]. IEEE Geoscience & Remote Sensing Letters, 2017, 14(3): 404-408
[16] LI J, ZHANG H, ZHANG L, et al. Joint collaborative representation with multitask learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(9): 5923-5936
[17] SU H, YU Y, DU Q, et al. Ensemble learning for hyperspectral image classification using tangent collaborative representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 3778-3790
[18] SHEN X, BAO W, LIANG H, et al. Grouped collaborative representation for hyperspectral image classification using a two-phase strategy[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 5505305.
[19] ZHOU C, TU B, REN Q, et al. Spatial peak-aware collaborative representation for hyperspectral imagery classification[J]. IEEE Geoscience and Remote Sensing Letters, 2021.
[20] VILLA A, BENEDIKTSSON J A, CHANUSSOT J, et al. Hyperspectral image classification with independent component discriminant analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12): 4865-4876