您好,欢迎来到中国测试科技资讯平台!

首页> 数字期刊群 >本期导读>侧偏刚度辨识与汽车简化模型研究

侧偏刚度辨识与汽车简化模型研究

476    2023-08-15

免费

全文售价

作者:卢涛1, 吴晓杰2

作者单位:1. 乌海职业技术学院机电工程系, 内蒙古 乌海 016000;
2. 吉林大学 汽车仿真与控制国家重点实验室, 吉林 长春 130022


关键词:汽车简化模型;侧偏刚度辨识;序列二次规划;三次样条插值;BP神经网络


摘要:

建立轮胎模型与车辆模型是汽车动力学研究不可或缺的重要部分,但是这两部分建模有一定难度且成本较大。为解决这一问题,建立车辆二自由度模型,以对标CarSim输出为目标,选取角阶跃工况,采用序列二次规划的优化算法,对前后轴侧偏刚度进行辨识。为更加精确地拟合侧偏刚度曲线,分别使用三次样条插值和BP神经网络,对侧偏刚度随车速和方向盘转角的变化关系进行拟合,得到拟合曲线。将拟合曲线加入二自由度模型,用于模型仿真时计算前后轴侧偏刚度,得到两种汽车简化模型。最后,选取双移线工况和圆周加速工况,对简化模型进行验证。结果表明,简化模型输出与CarSim输出吻合很好,两种简化模型差别不大,随着车速增大,误差会增大一些,但在准许范围内。说明该文所建立的简化模型可以很好地模拟车辆行为,轮胎侧偏刚度曲线可以很好地反映轮胎的非线性特性,省去轮胎建模过程和车辆建模过程,节约成本。


Identification of cornering stiffness and research on simplified vehicle models
LU Tao1, WU Xiaojie2
1. Department of Mechanical and Electrical Engineering, Wuhai Vocational and Technical College, Wuhai 016000, China;
2. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
Abstract: Establishing tire model and vehicle model are indispensable parts of vehicle dynamics. However, these two kinds of models are difficult to complete and cost much. In order to solve these problems, a two-degree-of-freedom model of vehicle was established. Aiming at obtaining the close output bewteen established model and CarSim, sequential quadratic programming algorithm was used to identify the cornering stiffness of the front and rear axles under angular step conditions. Cubic spline interpolation and BP neural network were respectively used to construct the curve of cornering stiffness. Two simplified vehicle models were established through combining the two-degree-of-freedom model with the two curves of cornering stiffness. Finally, two simplified vehicle models were verified under the double line shifting condition and the circular acceleration condition. The results show that the output of two simplified models are in good agreement with the output of CarSim. Output of two simplified models is approximative. As the vehicle speed increases, the error will increase, but within the allowable range. Therefore, two simplified models can simulate vehicle behavior well. The tire cornering stiffness curve can well reflect the non-linear characteristics of the tire. With the simplified vehicle model, we don't need the tire modeling process and vehicle modeling process. It can cost saving.
Keywords: simplified vehicle model;identification of cornering stiffness;sequential quadratic programming;cubic spline interpolation;BP neural network
2023, 49(5):97-107  收稿日期: 2021-05-26;收到修改稿日期: 2021-10-22
基金项目:
作者简介: 卢涛(1980-),男,河南周口市人,讲师,硕士,研究方向为车辆工程
参考文献
[1] 蔡彦兵, 赵亮. 纯电动汽车电动助力转向模糊控制策略研究[J]. 电子测量技术, 2019, 42(6): 1-5
[2] PENG H N, WANG W D, XIANG C L, et al. Torque coordinated control of four in-wheel motor independent-drive vehicles with consideration of the safety and economy[J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 9604-9618
[3] ZHU B, CHEN Y Z, ZHAO J. Integrated chassis control of active front steering and yaw stability control based on improved inverse nyquist array method[J]. Scientific World Journal, 2014: 919847
[4] 郭孔辉. 汽车操纵动力学[M]. 长春: 吉林科技出版社, 1991.
[5] 房占鹏. 汽车操纵稳定性模型及仿真方法研究[D]. 重庆: 重庆理工大学, 2010.
[6] MICHAEL W et al. A generic multibody vehicle model for simulation handling and braking[J]. Vehicle System Dynamics, 1996, 25(S1): 599-613
[7] PETERSEN M R, STARKEY J M. Nonlinear vehicle performance simulation with test correlation and sensitivity analysis[C]// International Congress & Exposition, 1996.
[8] 金智林, 马翠贞, 张甲乐. 基于电液制动的运动型多用途车防侧翻控制[J]. 仪器仪表学报, 2013, 34(11): 2572-2578
[9] 王维. 汽车平顺性与操纵稳定性协同研究与仿真实现[D]. 长春: 吉林大学, 2016.
[10] 边伟, 龚佳慧, 文爱民, 等. 基于遗传算法的魔术公式轮胎模型参数两级辨识[J]. 重庆交通大学学报(自然科学版), 2017, 36(5): 115-120
[11] BRAGHIN F, CHELI F, SABBIONO E. Identification of tire model parameters through full vehicle experimental tests[J]. Journal of Dynamic Systems Measurement and Control, 2011, 133(3): 2049-2053
[12] LIAN Y F, ZHAO Y, HU L L, et al. Cornering stiffness and sideslip angle estimation based on simplified lateral dynamic models for four-in-wheel-motor-driven electric vehicles with lateral tire force information[J]. International Journal of Automotive Technology, 2015, 16(4): 669-683
[13] NI J, HU J, XIANG C L. Relaxed static stability based on tyre cornering stiffness estimation for all-wheel-drive electric vehicle[J]. Control Engineering Practice, 2017, 64(1): 102-110
[14] HAN K, CHOI M, CHOI S B, et al. Estimation of the tire cornering stiffness as a road surface classification indicator using understeering characteristics[J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 6851-6860
[15] 徐劲力, 蒋园健, 魏翼鹰, 等. 汽车ESP系统关键参数估算研究[J]. 机械科学与技术, 2021, 40(1): 125-131
[16] 宗长富, 聂枝根, 王化吉. 商用车简化模型参数辨识方法[J]. 吉林大学学报(工学版), 2013, 43(5): 1171-1177
[17] 聂枝根, 宗长富. 重型半挂车简化模型参数辨识研究[J]. 汽车工程, 2015, 37(6): 622-630+616
[18] 余志生. 汽车理论. 第5版[M]. 北京:机械工业出版社, 2009.
[19] 樊天锁, 芮兵. 样条插值的MATLAB实现[J]. 佳木斯大学学报(自然科学版), 2011, 29(2): 238-240
[20] 夏海琴, 彭章友. 基于BP神经网络的飞机目标识别算法[J]. 电子测量技术, 2019, 42(14): 52-57
[21] 谷盛丰, 顾久, 郑玲玲, 等. 基于BP神经网络的路面不平度识别[J]. 汽车工程学报, 2019, 9(4): 252-259