您好,欢迎来到中国测试科技资讯平台!

首页> 数字期刊群 >本期导读>无线传感器网络节点通信与定位综合信号设计

无线传感器网络节点通信与定位综合信号设计

554    2022-12-10

免费

全文售价

作者:路文娟1, 张辉1, 张世强2

作者单位:1. 武汉铁路职业技术学院,湖北 武汉 430205;
2. 武汉科技大学信息科学与工程学院,湖北 武汉 430081


关键词:无线传感器网络;极大似然定位;一体化信号;频偏


摘要:

针对无线传感器网络中依赖于接收信号强度指示(RSSI)的极大似然定位算法易受环境噪声影响的问题,设计传感器节点的通信与定位一体化信号。对锚节点的激励信号设置较小的载波频偏并设计激励信号,将传输的数字序列与距离信息调制到一个信号星座图中,未知节点通过对信号的信息解调可以初步计算未知节点与锚节点间的距离。未知节点将初步的估计距离信息发送给锚节点来调节信号频偏,再次精细距离的测量准确度,最后采用极大似然法直接计算未知节点的位置。该方法是在一体化的通信信号中解调数字序列和距离信息,避免再将信号强度转化为距离的过程。仿真结果表明:节点的通信与定位综合信号可以一定程度上提高定位准确度,在不同的节点数、锚节点数、通信半径和信噪比下定位误差分别为22.44%、21.15%、19.18%和21.79%,可为节点定位提供一个简便的计算方案。


Node communication and localization integration signal design in wireless sensor network
LU Wenjuan1, ZHANG Hui1, ZHANG Shiqiang2
1. Wuhan Railway Vocational College of Technology, Wuhan 430205, China;
2. School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
Abstract: In order to solve the problem that the maximum likelihood localization algorithm, which depends on received signal strength indication (RSSI), is easily affected by environmental noise in wireless sensor network (WSN), communication and localization integration signal for sensor nodes is designed. A small carrier frequency offset is set for the excitation signal of the anchor node, and the excitation signal is designed to modulate the transmitted digital sequence and distance information into a signal constellation. The unknown node can calculate the distance between the unknown node and the anchor node from the signal informationdemodulation. The unknown node sends the preliminary estimated distance information to anchor nodesfor adjusting the frequency offset, which refines the measurement accuracy of the distance. Finally, the maximum likelihood method is used to calculate the position of the unknown node directly. The method demodulates digital sequence and distance information in the integrated communication signal to avoid the process of converting signal strength into the distance. The simulation results show that the integrated signal of communication and localization can improve the positioning accuracy to a certain extent, which provides a simple calculation scheme for node localization. Under different node number, anchor node number, communication radius and signal-to-noise ratio, positioning errors are 22.44%, 21.15%, 19.18% and 21.79% respectively.
Keywords: wireless sensor network;maximum likelihood localization;integration signal;frequency offset
2022, 48(9):112-117  收稿日期: 2021-06-21;收到修改稿日期: 2021-09-12
基金项目: 教育部科技发展中心产学研创新基金项目(2018A04024)
作者简介: 路文娟(1981-),女,河南周口市人,副教授,硕士,研究方向为无线定位、信号设计
参考文献
[1] 曹志斌, 杨卫, 邵星灵, 等. 基于众数判定的PIR传感器网络目标定位方法[J]. 中国测试, 2018, 44(7): 110-115
[2] WANG T, ZHAO H, SHEN Y. An efficient single-anchor localization method using ultra-wide bandwidth systems[J]. Applied Sciences, 2019, 10(57): 1-17
[3] LIU Z, DA I W, WIN M Z. Mercury: An infrastructure-free system for network localization and navigation[J]. IEEE Transactions on Mobile Computing, 2018, 17(5): 1119-1133
[4] DANAEE M R, BEHNIA F. Improved least squares approaches for differential received signal strength-based localization with unknown transmit power[J]. Wireless Personal Communications, 2020, 110(3): 1373-1401
[5] GUNIA M, LU Y, JORAM N, et al. Statistical positioning quality metrics for common received signal strength-based positioning techniques[J]. IEEE sensors journal, 2019, 19(23): 11377-11395
[6] AZMI K, BERBER S M, NEVE M J. Theoretical and practical limits in position estimation based on received signal strength measurements[J]. Wireless Personal Communications, 2020, 111(2): 1295-1311
[7] ZHAO S, ZHANG X P, CUI X, et al. Semidefinite programming two-way TOA localization for user devices with motion and clock drift[J]. IEEE Signal Processing Letters, 2021, 28: 578-582
[8] WAN C, ZHAO L, DING Y, et al. A two-phase ranging algorithm for sensor localization in structural health monitoring[J]. Environmental Pollution, 2018, 9(1): 1-8
[9] WANG Y, SHEN Y. Joint spatiotemporal multipath mitigation in large-scale array localization[J]. IEEE Transactions on Signal Processing, 2018, 67(3): 783-797
[10] BLUNT S D, MOKOLE E L. Overview of radar waveform diversity[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(11): 2-42
[11] LIU F, ZHOU L, MASOUROS C, et al. Towards dual-functional radar-communication systems: optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264-4279
[12] WANG Z, LIAO G, YANG Z. Space-frequency modulation radar-communication and mismatched filtering[J]. IEEE Access, 2018, 6: 24837-24845
[13] LUO Y, ZHANG A, HUANG X, et al. Optimization and quantization of multibeambeamforming vector for joint communication and radio sensing[J]. IEEE Transactions on Communications, 2019, 67(9): 6468-6482
[14] ZHANG A, HUANG X, GUO Y J, et al. Multibeam for joint communication and sensing using steerable analog antenna arrays[J]. IEEE Transactions on Vehicular Technology, 2018, 68(1): 671-685
[15] ZHU C, SONG M, DANG X. Design of OAM beam directional modulation signal in communication and guidance integration[J]. Radioengineering, 2020, 29(3): 563-572
[16] 宋海声, 朱长驹, 吴佳欣, 等. 基于RSS阈值模型的Amorphous算法定位误差抑制[J]. 计算机工程与科学, 2018, 40(5): 821-828
[17] 危华明. WSN双迭代栅格扫描定位算法[J]. 中国测试, 2020, 46(12): 135-141
[18] 宋海声, 朱长驹, 杨鸿武, 等. Grid-Scan定位算法的虚拟锚节点策略改进[J]. 计算机工程与应用, 2017, 53(16): 84-88+109