登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 数字期刊群 >本期导读>基于零和博弈的PHEV制动能量回收控制策略

基于零和博弈的PHEV制动能量回收控制策略

1810    2020-03-14

¥0.50

全文售价

作者:鲁楠, 唐岚, 王瀚, 赵歆

作者单位:西华大学汽车与交通学院,四川 成都 610039


关键词:制动能量回收;电池寿命;零和博弈;PHEV


摘要:

新能源客车的再生制动过程将车辆动能转换为电能充入动力电池,实现能量的回收利用。为兼顾再生制动过程中的能量回收和电池寿命保护,针对某PHEV车型提出一种基于零和博弈的制动能量回收策略。通过建立优化目标和转矩分配的二人零和博弈模型,运用线性加权法得到Nash均衡,构造制动转矩分配问题的多目标优化代价函数。在Matlab/Simulink环境中进行仿真分析,该控制策略实现稳定制动的同时对再生制动大电流充电进行有效限制,表明基于零和博弈的制动能量回收控制策略能够实现制动力矩的合理分配,具有保护电池寿命的效果。


Brake energy recovery control strategy for plug-in hybrid electric vehicle based on zero-sum game
LU Nan, TANG Lan, WANG Han, ZHAO Xin
School of Automobile and Transportation, Xihua University, Chengdu 610039, China
Abstract: During the regenerative braking process of the new energy bus, the vehicle converts the kinetic energy into electric energy and charges it into the power battery to realize energy recycling. In order to balance energy recovery and battery life protection, a zero-sum game-based braking energy recovery strategy is proposed for a PHEV model. In this paper, a two-person zero-sum game model of optimization target and torque distribution is established. The Nash equilibrium is obtained by linear weighting method, and the multi-objective optimization cost function of braking torque distribution problem is constructed. The simulation analysis is carried out in the Matlab/Simulink environment. This control strategy achieves stable braking and effectively limits the high current charging caused by regenerative braking. The results show that the braking energy recovery control strategy based on zero-sum game can realize the reasonable distribution of braking torque and has the effect of protecting battery life.
Keywords: braking energy recovery;battery life;zero-sum game;PHEV
2020, 46(3):128-134  收稿日期: 2019-03-04;收到修改稿日期: 2019-06-15
基金项目: 四川省科技支撑重点项目(2019YFG0042);西华大学研究生创新基金(ycjj2017089,ycjj2018101)
作者简介: 鲁楠(1992-),男,安徽桐城市人,硕士研究生,专业方向为新能源汽车的能量管理策略
参考文献
[1] QIU C Q, WANG G L. New evaluation methodology of regenerative braking contribution to energy efficiency improvement of electric vehicles[J]. Energy Conversion and Management, 2016, 119: 389-398
[2] 高树健. 电动汽车再生制动控制策略设计及仿真 [D]. 西安: 长安大学, 2013.
[3] 李博溪, 谭立真. HEV制动能量回收策略研究[J]. 北京汽车, 2015(3): 20-36
[4] 黄晶莹. 纯电动汽车再生制动充电安全与制动稳定性研究[D]. 重庆: 重庆大学, 2015.
[5] WU J, WANG X Y, LI L, et al. Hierarchical control strategy with battery aging consideration for hybrid electric vehicle regenerative braking control[J]. Energy, 2018, 145: 301-312
[6] 初亮, 蔡健伟, 富子丞, 等. 纯电动汽车能量回收评价与试验方法研究[J]. 华中科技大学学报(自然科学版), 2014, 42(1): 18-22
[7] SU L S, ZHANG J B, WANG C J, et al. Identifying main factors of capacity fading in lithium ion cells using orthogonal design of experiments[J]. Applied Energy, 2016, 163: 201-210
[8] 胡银全, 刘和平, 刘平, 等. 电动汽车用磷酸铁锂电池充电特性的分析[J]. 汽车工程, 2013, 35(4): 293-297
[9] 胡威. 镍氢电池循环寿命表征方法的研究[D].天津: 天津大学, 2006.
[10] TANG L, RIZZONI G, ONORI S. Energy management strategy for HEVs including battery life optimization[J]. IEEE Transactions on Transportation Electrification, 2015, 1(3): 211-222
[11] 刘汉雨. 锂离子电池充电方法及寿命预测研究[D].北京: 北京工业大学, 2014.
[12] 郭栋, 朱文平, 孙宇航, 等. 城市电动公交车制动能量回收控制策略研究[J]. 汽车工程, 2016, 38(3): 269-273
[13] 倪计民, 陈琦, 石秀勇, 等. 基于底盘建模的纯电动车最大效率再生制动策略研究[J]. 小型内燃机与车辆技术, 2017, 46(4): 1-9
[14] GAO Y M, CHEN L P, EHSANI M. Investigation of the effectiveness of regenerative braking for EV and HEV[C] // Future Transportation Technology Conference and Exposition. 1999.
[15] 孙大许, 兰凤崇, 陈吉清. 基于I线制动力分配的四驱纯电动汽车制动能量回收策略的研究[J]. 汽车工程, 2013, 35(12): 1057-1061
[16] 初敏, 高松, 杨坤, 等. 纯电动客车最佳制动能量回收控制策略研究[J]. 广西大学学报(自然科学版), 2015, 40(2): 357-366
[17] 唐云岚, 赵青松, 高妍方, 等. Pareto 最优概念的多目标进化算法综述[J]. 计算机科学, 2008, 35(10): 20-57
[18] 王钦普, 游思雄, 李亮, 等. 插电式混合动力汽车能量策略研究综述[J]. 机械工程学报, 2017, 53(16): 1-19
[19] WEI W, LIU F, MEI S W. Nash bargain and complementarity approach based environmental/economic dispatch[J]. IEEE Transactions on Power Systems, 2015, 30(3): 1548-1549
[20] 梅生伟, 刘峰, 魏韡. 工程博弈论基础及电力系统应用[M]. 北京: 科学出版社, 2016:45-70.
[21] CHEN L, WANG G, GONG Y, et al. Multi-objective long-term generation sheduling based on two person-zero sum games[C] //Proceedings of the 31st Chinese Control Conference. 2012.
[22] NASH J. The bargaining problem[J]. The Econometric Society, 1950, 18(2): 155-162
[23] DEXTREIT C, KOLMANOVSKY I V. Game theory controller for hybrid electric vehicles[J]. IEEE Transactions on Control Systems Technology, 2014, 22(2): 652-663