您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>复合材料翼面结构载荷测量及温度修正技术研究

复合材料翼面结构载荷测量及温度修正技术研究

2    2024-01-15

免费

全文售价

作者:朱江辉

作者单位:中国飞行试验研究院,陕西 西安 710089


关键词:复合材料;湿热环境;应变电桥;机翼盒段;载荷测量


摘要:

为修正飞行载荷测量时复合材料结构受湿热环境影响作用,提高载荷测量的精准度,开展复合材料翼面结构载荷测量的修正技术研究。首先,综合考虑湿热环境变化引起的作用,通过分析正交各向异性复合材料的本构模型,建立复合材料湿热力环境应变分离方法。进行碳纤维复合材料平尾盒段温度-载荷试验研究,得到不同应变改装方案下电桥热输出规律以及应变电桥响应系数随温度变化规律。针对飞行试验条件,给出复合材料翼面结构载荷测量受温度影响的定量分析结果及其修正方法,并建立载荷修正方程。结果表明,所构建的修正方法,可明显提高载荷测量精准度。


Study on load measurement and temperature correction technology of composite wing structure
ZHU Jianghui
Chinese Flight Test Establishment, Xi’an 710089, China
Abstract: In order to correct the influence of humid and thermal environment on composite structure during flight load measurement and improve the accuracy of load measurement, the modification technology of composite wing structure load measurement was carried out. Firstly, by analyzing the constitutive model of orthotropic composite material, a method for separation of strain in humid thermal environment was established. The temperature-load test of carbon fiber composite flat tail box was carried out, the thermal output law of the bridge and the variation law of the strain bridge response coefficient with temperature under different strain modification schemes are obtained. In view of the flight test conditions, the quantitative analysis results and correction methods of the influence of humidity and heat on the load measurement of composite wing structure are given. The results show that the precision of load measurement can be improved obviously by the proposed method.
Keywords: composite materials;humid thermal environment;strain bridge;wing box section;load measurement
2023, 49(7):101-111  收稿日期: 2022-01-12;收到修改稿日期: 2022-03-26
基金项目:
作者简介: 朱江辉(1985-),男,陕西西安市人,高级工程师,博士,主要研究方向为飞行器飞行试验,结构振动与噪声控制
参考文献
[1] 李亚南, 张鹏程. 压力分布飞行实测进展研究[J]. 科技传播, 2018, 6: 175-179
[2] 宫海波, 任晓斌, 张振华. 机载分布式应变参数采集系统设计[J]. 中国测试, 2021, 47(z1): 165-168
[3] 吴波, 孟敏. 基于工况组合的飞行载荷测量方法[J]. 现代机械, 2020, 5: 56-59
[4] 原正庭. 亚音速飞机压力分布测量[J]. 航空学报, 1998(4): 103-105
[5] 谢伟, 窦鹏鹏, 薛展. 湿热环境下复合材料层合板本构模型研究及其应用[J]. 航空工程进展, 2019, 10(1): 62-72
[6] 周 松, 贾耀雄, 许良, 等. 湿热环境对T800碳纤维/环氧树脂基复合材料力学性能的影响[J]. 材料工程, 2021, 49(10): 138-143
[7] COSTA M L, REZENDE M C, ALMEIDA S F. Strength of hygrothermally conditioned polymer composites with voids[J]. Journal of Composite Materials, 2005, 9(1): 1943-1961
[8] EFTEKHARI M, FATEMI A. Tensile behavior of thermoplastic composites including temperature, moisture, and hygrothermal effects[J]. Polymer Testing, 2016, 51: 151-164
[9] ALMEIDA J H S, SOUZA S D B, BOTELHO E C, et al. Carbon fiber-reinforced epoxy filament-wound composite laminates exposed to hygrothermal conditioning[J]. Journal of Materials Science, 2016, 51(9): 4697-4708
[10] YANG Q, LI X, SHI L, et al. The thermal characteristics of epoxy resin: design and predict by using molecular simulation method[J]. Polymer, 2013, 54(23): 6447-6454
[11] SHEN C H, SPRINGER G S. Effects of moisture and temperature on the tensile strength of composite materials[J]. Journal of Composite Materials, 1977, 11(1): 2-16
[12] 杨旭东, 安 涛, 邹田春, 等. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 47(7): 84-91
[13] 张婕, 程小全, 程羽佳, 等. 湿热环境对 CCF800 /环氧挖补板拉压性能的影响[J]. 北京航空航天大学学报, 2020, 46(6): 1116-1124
[14] 刘玉佳, 燕瑛, 何明泽, 等. 湿/热/力耦合条件下复合材料结构渐进损伤仿真[J]. 北京航空航天大学学报, 2012, 38(3): 384-388,393
[15] KRZYSZTOF D, ELZBIETA R, JAN T. Modeling of fiber-reinforced composite material subjected to thermal load[J]. Journal of Thermal Stresses, , 35(7):, 2012, 35(7): 579-595