登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>新型复合材料界面粘接缺陷的CT检测及表征

新型复合材料界面粘接缺陷的CT检测及表征

1403    2020-01-19

免费

全文售价

作者:温银堂1,2, 张松1,2, 张玉燕1,2, 高亭亭1,2

作者单位:1. 燕山大学电气工程学院, 河北 秦皇岛 066004;
2. 燕山大学 测试计量技术及仪器河北省重点实验室, 河北 秦皇岛 066004


关键词:新型陶瓷基复合材料;数学形态学;CT检测;界面粘接缺陷


摘要:

新型陶瓷基复合材料作为一种热防护材料,与基体的粘接层界面容易出现孔洞、夹杂和裂纹等缺陷,严重影响材料的安全使用性能。针对复合材料粘接界面缺陷问题,开展基于工业CT的粘接缺陷检测及量化表征方法研究。对于CT图像,提出一种数学形态学和FCM阈值分割相结合的方法,用于提取粘接缺陷的边缘,建立相应的量化指标,并进行表征。实验分析表明,通过与标准缺陷面积的复合材料比较,对被测不规则界面粘接缺陷面积的预测误差在±6%以内。应用工业CT成像方法并结合该文提出的分割算法,能有效、准确地分割和量化粘接层缺陷,满足复合材料构件界面粘接层缺陷准确检测及表征的要求,可为新型陶瓷基复合材料粘接结构构件的可靠性评估提供技术依据。


CT detection and characterization for interface defects of new composite materials
WEN Yintang1,2, ZHANG Song1,2, ZHANG Yuyan1,2, GAO Tingting1,2
1. School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China;
2. Hebei Province Key Laboratory of Measuring and Testing Technologies and Instruments, Yanshan University, Qinhuangdao 066004, China
Abstract: As a kind of thermal protective material, the interface between the new ceramic matrix composites and the matrix is prone to defects such as holes, inclusions and cracks, which seriously affects the safe service performance of the materials. Aiming at the problem of bonding interface defects of composites, the detection and quantitative characterization of bonding defects based on industrial CT were studied. For CT images, a combination of mathematical morphology and FCM threshold segmentation was proposed to extract the edges of bonding defects and establish corresponding quantitative index. The experimental results showed that the relative error of the irregular interface bonding defect area is within ±6% compared with the standard defect area composite material. The application of industrial CT imaging method combined with the segmentation algorithm proposed in this paper can effectively and accurately segment and quantify the defects of the bonding layer, which can meet the requirements of accurate detection and characterization of the interface bonding layer defects of composite components. It provides a strong technical basis for the reliability evaluation of new ceramic matrix composite bonded structural members.
Keywords: new ceramic matrix composites;mathematical morphology;CT inspection;interface bonding defect
2020, 46(1):12-17  收稿日期: 2019-06-11;收到修改稿日期: 2019-07-01
基金项目: 河北省自然科学基金(E2017203240)
作者简介: 温银堂(1978-),男,河北唐县人,副研究员,博士,主要研究方向为智能传感、结构无损检测及健康监测技术
参考文献
[1] 施伟, 谭毅, 曹作暄. 隔热材料研究现状及发展趋势[J]. 材料导报, 2012, 26(S1):344-347
[2] 吴凯, 张铁军, 姚为, 等. 航天新型高性能材料的研究进展[J]. 宇航材料工艺, 2017, 47(6):1-9
[3] 梅辉, 张鼎, 夏俊超, 等. 浅谈陶瓷基复合材料无损检测方法及其进展[J]. 航空制造技术, 2017, 60(5):24-30
[4] KONG L, ZUO X, ZHU S, et al. Novel carbon-poly(silacetylene) composites as advanced thermal protection material in aerospace applications[J]. Composites Science and Technology, 2018, 162:163-169
[5] 沈学霖, 朱光明, 杨鹏飞. 航空航天用隔热材料的研究进展[J]. 高分子材料科学与工程, 2016, 32(10):164-169
[6] 梁远远, 杨生胜, 文轩, 等. 涡流无损检测成像技术研究进展[J]. 真空与低温, 2019, 25(1):62-69
[7] 周正干, 李文涛. 航空航天领域中先进超声检测技术的发展和应用[J]. 航空制造技术, 2018, 61(19):34-44
[8] 李胤, 田干, 杨正伟, 等. 复合材料低速冲击损伤超声红外热波检测能力评估[J]. 仪器仪表学报, 2016, 37(5):1124-1130
[9] MORDASOV V I, SAZONNIKOVA N A, STOROZH A D, et al. Method of laser vibrating defectoscopy of multilayer composite materials[J]. Procedia Engineering, 2015, 106:240-246
[10] WEBER E, FERNANDEZ M, WAPNER P, et al. Comparison of X-ray micro-tomography measurements of densities and porosity principally to values measured by mercury porosimetry for carbon-carbon composites[J]. Carbon, 2010, 48(8):2151-2158
[11] LALL P, DESHPANDE S, WEI J, et al. Non-destructivecrack and defect detection in SAC solder interconnects using cross-sectioning and X-ray micro-CT[C]//Electronic Components and Technology Conference. IEEE, 2014:1449-1456.
[12] LI Y, SUN B, GU B. Impact shear damage characterizations of 3D braided composite with X-ray micro-computed tomography and numerical methodologies[J]. Composite Structures, 2017, 176(9):43-54
[13] 杨少丹, 宋克兴, 张彦敏, 等. 基于工业CT扫描的材料内部裂纹表征与分析[J]. 金属热处理, 2017, 42(2):211-215
[14] 阚晋, 孟松鹤, 王军. C/C复合材料微观结构的CT分析[J]. 硅酸盐通报, 2009, 28(S1):198-200
[15] 汪亮, 金福江, 陈峻严. 基于区域生长和FCM模糊聚的颅内出血CT图像分割[J]. 系统仿真报, 2014, 26(2):231-235
[16] 林世毅, 苏广川, 陈东, 等. 基于小波变换和数学形态学的边缘检测法[J]. 仪器仪表学报, 2004, 25(s1):685-687
[17] 徐路, 蒋振刚. 一种改进的快速FCM图像分割算法[J]. 长春理工大学学报(自然科学版), 2018, 41(2):134-138