登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>机器视觉检测图像拼接融合技术研究进展

机器视觉检测图像拼接融合技术研究进展

522    2020-01-19

免费

全文售价

作者:刘桂雄, 张瑜, 蔡柳依婷

作者单位:华南理工大学机械与汽车工程学院, 广东 广州 510640


关键词:机器视觉;图像拼接;图像融合;深度学习


摘要:

机器视觉检测任务通常需通过图像拼接获取高质量、宽视野的被检对象,图像拼接融合是实现机器视觉图像拼接的关键步骤,该文系统评述常见机器视觉检测图像拼接融合技术,包括基于平滑过渡的机器视觉图像拼接融合技术、基于缝合主线的机器视觉图像拼接融合技术以及基于深度学习的机器视觉图像拼接融合技术等,阐述各技术方法的主要数学模型、工作机理以及性能特点,以及总结当前图像拼接融合技术先进方法与图像拼接配准技术值得关注的方向。


Overview of image blending technique in machine vision detection
LIU Guixiong, ZHANG Yu, CAI Liuyiting
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
Abstract: Machine vision detection tasks usually require high-quality, wide-field objects through image stitching. Image blending is a key step to achieve image stitching. This paper systematically reviews common image blending method in machine vision detection, including transition smoothing-based blending, optimal seam-based blending and blending based on deep learning, etc. The paper explains the main mathematical models, working theory and performance characteristics of each method, summarizes the current advanced image blending method, and proposes several research directions which deserve attention.
Keywords: machine vision;image stitching;image blending;deep learning
2020, 46(1):1-6  收稿日期: 2019-08-30;收到修改稿日期: 2019-09-25
基金项目: 广州市产业技术重大攻关计划(2018020300006);广东省特检院科研项目(2020CY14)
作者简介: 刘桂雄(1968-),男,广东揭阳市人,教授,博导,主要从事先进传感与仪器研究
参考文献
[1] 李炳银. 机器视觉及其在制造业中的应用分析[J]. 数字通信世界, 2017(9):103
[2] 王宇, 吴智恒, 邓志文, 等. 基于机器视觉的金属零件表面缺陷检测系统[J]. 机械工程与自动化, 2018(4):210-211
[3] DU X, KOJIMOTO N, ANTHONY B W. Concentric circular trajectory sampling for super-resolution and image mosaicing[J]. Journal of the Optical Society of America A, 2015, 32(2):293
[4] 盛明伟, 唐松奇, 万磊, 等. 二维图像拼接技术研究综述[J]. 导航与控制, 2019, 18(1):27-34
[5] 朱铮涛, 黎绍发. 镜头畸变及其校正技术[J]. 光学技术, 2005(1):136-138
[6] CUI J, CAO Y, WANG W. Application of an improved algorithm based on watershed combined with krawtchouk invariant moment in inspection image processing of substations[J]. Proceedings of the Csee, 2015, 35(6):1329-1335
[7] ZARAGOZA J, CHIN T J, BROWN M S, et al. As-projective-as-possible image stitching with moving DLT[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2013:2339-2346.
[8] GHERARDI A, BEVILACQUA A. Manual stage acquisition and interactive display of digital slides in histopathology[J]. IEEE Journal of Biomedical and Health Informatics, 2014, 18(4):1413-1422
[9] SZELISKI R. Image alignment and stitching:A tutorial[J]. Foundations and Trends® in Computer Graphics and Vision, 2007, 2(1):1-104
[10] GHOSH D, KAABOUCH N. A survey on image mosaicing techniques[J]. Journal of Visual Communication and Image Representation, 2016, 34:1-11
[11] SHAO Z F, CAI J. Remote sensing image fusion with deep convolutional neural network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(5):1656-1669
[12] BERGEN T, WITTENBERG T. Stitching and surface reconstruction from endoscopic image sequences:a review of applications and methods[J]. IEEE Journal of Biomedical and Health Informatics, 2014, 20(1):304-321
[13] LANCELLE M, MARTIN T, SOLENTHALER B, et al. Anaglyph caustics with motion parallax[J]. Computer Graphics Forum, 2016, 35(7):343-352
[14] SYMES P D. Real-time multi-level digital compositing quality issues[J]. Smpte Journal, 2015, 98(5):376-378
[15] 黄三发, 陈福民, 陈小灿. ALPHA融合在无缝投影中的应用[J]. 计算机应用与软件, 2007(12):161-162
[16] 霍星, 解凯. 多投影无缝拼接中Alpha融合的研究[J]. 北京印刷学院学报, 2014, 22(2):68-71
[17] 杨国平, 陈福民. 多投影仪Alpha融合的后期Gamma校正[J]. 计算机应用与软件, 2009, 26(1):232-233
[18] KURPINSKI C M, CHIBA T, MCBRIDE J. Weighted average image blending based on relative pixel position:U. S. Patent 8, 923, 648[P]. 2014-12-30.
[19] SZELISKI R. Computer vision:algorithms and applications[M]. Springer Science & Business Media, 2010.
[20] 玉振明, 高飞. 基于金字塔方法的图像融合原理及性能评价[J]. 计算机应用研究, 2004(10):128-130
[21] BHARDWAJ A, RAMAN S. Robust PCA-based solution to image composition using augmented Lagrange multiplier (ALM)[J]. The Visual Computer, 2016, 32(5):591-600
[22] ZHAN K, LI Q, TENG J, et al. Multifocus image fusion using phase congruency[J]. Journal of Electronic Imaging, 2015, 24(3):033014
[23] 章林通, 吕绪良, 隋明序, 等. 一种基于小波变换的图像融合方法[J]. 光电技术应用, 2016, 31(2):51-53
[24] 陈浩, 王延杰. 基于拉普拉斯金字塔变换的图像融合算法研究[J]. 激光与红外, 2009, 39(4):439-442
[25] MOREL J M, PETRO A B, SBERT C. Fourier implementation of Poisson image editing[J]. Pattern Recognition Letters, 2012, 33(3):342-348
[26] XUE J, CHEN S, CHENG X, et al. A new optimal seam method for seamless image stitching[C]//Ninth International Conference on Digital Image Processing (ICDIP 2017). International Society for Optics and Photonics, 2017.
[27] BHAT P, ZITNICK C L, COHEN M F, et al. GradientShop:A gradient-domain optimization framework for image and video filtering[J]. ACM Trans. Graph., 2010, 29(2):10:1-10:14
[28] SUMMERS-STAY D. Graphcut texture synthesis for single-image superresolution[D]. New-York:NYU, 2017
[29] 张翔, 王伟, 肖迪. 基于改进最佳缝合线的图像拼接方法[J]. 计算机工程与设计, 2018, 39(7):1964-1970
[30] GAO J, LI Y, CHIN T J, et al. Seam-driven image stitching[C]//Eurographics (Short Papers). 2013:45-48.
[31] LIU Y, CHEN X, WANG Z, et al. Deep learning for pixel-level image fusion:Recent advances and future prospects[J]. Information Fusion, 2018, 42:158-173
[32] YU L, XUN C, HU P, et al. Multi-focus image fusion with a deep convolutional neural network[J]. Information Fusion, 2017, 36:191-207
[33] DU C, GAO S. Image segmentation-based multi-focus image fusion through multi-scale convolutional neural network[J]. IEEE Access, 2017(99):1-1
[34] ZEILER M D, KRISHNAN D, TAYLOR G W, et al. Deconvolutional networks[C]//Computer Vision & Pattern Recognition. 2010.
[35] LIU Y, CHEN X, WARD R, et al. Image fusion with convolutional sparse representation[J]. IEEE Signal Processing Letters, 2016:1-1
[36] BENGIO Y, LAMBLIN P, DAN P, et al. Greedy layer-wise training of deep networks[J]. Advances in Neural Information Processing Systems, 2007, 19:153-160
[37] 李红, 刘芳, 杨淑媛, 等. 基于深度支撑值学习网络的遥感图像融合[J]. 计算机学报, 2016, 39(8):1583-1596