您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>水下无人平台的模型参考自适应姿态控制研究

水下无人平台的模型参考自适应姿态控制研究

371    2024-07-25

¥0.50

全文售价

作者:金涛涛1, 崔秀慧1, 王健2, 苗沛1

作者单位:1. 北京建筑大学机电与车辆工程学院,北京 100044;
2. 中冶京诚工程技术有限公司,北京 100176


关键词:模型参考自适应PID控制;水下无人平台;姿态控制;集成控制


摘要:

水下无人平台通常用于海洋勘探和开发,以帮助研究人员了解水下情况。针对水下无人平台在恶劣海底环境下保持姿态稳定困难,无法有效开展海底矿物资源勘探及实时回传清晰、稳定水下图像的问题,设计一种基于模型参考自适应PID的姿态控制系统。通过控制器不断迭代控制参数,使平台在搭载不同水下勘探设备的情况下依然能够保持水下姿态的稳定。分别在Matlab/Simulink环境和实际工况下对平台的姿态控制进行仿真分析及测试,实验结果表明:该模型无论在大、小角度转向均以较短的调节时间(4.36 s、2.69 s)和几乎为0%的超调量优于其他模型,具有良好的控制效果。尤其对于运行环境及搭载设备会造成控制模型结构及参数发生变化的问题,模型参考自适应PID控制具有更好的鲁棒性。该研究可为今后水下平台快速、准确的调节自身姿态,保持稳定状态提供可靠的技术解决方案。


Research on model reference adaptive attitude control for unmanned underwater platform
JIN Taotao1, CUI Xiuhui1, WANG Jian2, MIAO Pei1
1. School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;
2. Capital Engineering & Research Incorporation Limited, Beijing 100176 , China
Abstract: Unmanned underwater platforms are generally employed for marine exploration and development to help researchers understand underwater conditions. Aiming at the difficulties of maintaining attitude stability of underwater unmanned platform in harsh seabed environment, which can not effectively carry out seabed mineral resource exploration and send clear and stable underwater images in real time, an attitude control system based on adaptive PID model reference was designed. By continuously iterating the control parameters through the controller, the platform can still maintain the stability of the attitude when the seabed is equipped with different underwater exploration equipment. The attitude control of unmanned underwater platform is simulated and tested in Matlab/Simulink environment and actual working conditions respectively. The results show that the model turns at a shorter and small angle at a shorter adjustment time (4.36 s, 2.69 s) and almost 0% over-adjustment than other models, and has good control effects. Especially for the problem that the control model structure and parameters will change due to the operating environment and the on-board equipment, the model reference adaptive PID control has better robustness. It can provide a reliable technical solution for the future underwater platform to quickly and accurately adjust its posture and maintain a stable state.
Keywords: model reference adaptive PID control;unmanned underwater platform;attitude control;integrated control
2024, 50(7):107-114  收稿日期: 2023-03-29;收到修改稿日期: 2023-05-18
基金项目: 北京市科技计划(Z161100002216005);北京建筑大学“双塔计划”(YXZJ20220807)
作者简介: 金涛涛(1983-),男,河南信阳市人,讲师,博士,研究方向为机器人与人工智能、控制理论及应用、工业智能控制。
参考文献
[1] 吴伟, 曾庆军, 王阳, 等. 水下机器人多电机协同模糊滑模控制研究[J]. 中国测试, 2021, 47(11): 101-106.
WU W, ZENG Q J, WANG Y, et al. Research on fuzzy sliding mode control of multi motor cooperative underwater robot[J]. China Measurement & Test, 2021, 47(11): 101-106.
[2] 任福深, 范玉坤. 基于小型两栖机器人横向定深控制研制[J]. 电子测量技术, 2021, 44(9): 77-84.
REN F S, FAN Y K. Development of lateral depth control based on small amphibious robots[J]. Electronic Measurement Technology, 2021, 44(9): 77-84.
[3] 吴杰, 王志东, 凌宏杰, 等. 深海作业型带缆水下机器人关键技术综述[J]. 江苏科技大学学报(自然科学版), 2020, 34(4): 1-12.
WU J, WANG Z D, LING H J, et al. A review of key technologies for deep-sea operation type cable underwater robots[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2020, 34(4): 1-12.
[4] 赵羿羽. 水下遥控机器人最新发展动向[J]. 中国船检, 2020(8): 51-55.
ZHAO Y Y. The latest development trend of underwater remote-controlled robots[J]. China Ship Inspection, 2020(8): 51-55.
[5] 王永鼎, 王鹏, 孙鹏飞. 自主式水下机器人控制技术研究综述[J]. 世界科技研究与发展, 2021, 43(6): 636-648.
WANG Y D, WANG P, SUN P F. A review of control technology for autonomous underwater robots[J]. World Science and Technology Research and Development, 2021, 43(6): 636-648.
[6] YA X L, SHU X G, CHUN F Y. Preliminary concept of a novel spherical underwater robot[J]. International Journal of Mechatronics and Automation, 2015, 5(1): 11-21.
[7] MI E V, MICHALIS M, SHU Z S G. An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators[J]. IEEE Trans. Systems, Man, and Cybernetics: Systems, 2019, 49(7): 1-11.
[8] 王鸿儒, 刘云平, 马金虎, 等. 基于奇异摄动法的水下机器人串-并联PID控制[J]. 空间控制技术与应用, 2021, 47(3): 40-48.
WANG H R, LIU Y P, MA J H, et al. Series parallel PID control of underwater robots based on singular perturbation method[J]. Space Control Technology and Applications, 2021, 47(3): 40-48.
[9] 骆晓玲, 王子含. 基于模糊PID的水下航行器运动控制研究[J]. 电子测量技术, 2020, 43(19): 53-56.
LUO X L, WANG Z H. Research on motion control of underwater vehicles based on fuzzy PID[J]. Electronic Measurement Technology, 2020, 43(19): 53-56.
[10] NGUYEN Q H, EDWIN K. Adaptive PD-controller for positioning of a remotely operated vehicle close to an underwater structure: Theory and experiments[J]. Control Engineering Practice, 2006, 15(4): 411-419.
[11] 陈巍, 魏延辉, 曾建辉, 等. AUV纵倾角动态面滑模自适应控制[J]. 火力与指挥控制, 2016, 41(6): 73-76.
CHEN W, WEI Y H, ZENG J H, et al. AUV pitch angle dynamic surface sliding mode adaptive control[J]. Firepower and Command Control, 2016, 41(6): 73-76.
[12] 付嘉忻. 基于PID控制的水下无人监测平台研制[D]. 北京: 北京林业大学, 2020.
[13] 张颖, 乔贵方, 王保升, 等. 基于优化位姿集的工业机器人运动学参数辨识方法研究[J]. 中国测试, 2023, 49(3): 91-95.
ZHANG Y, QIAO G F, WANG B S, et al. Research on kinematics parameter identification method of industrial robot based on optimized pose set[J]. China Measurement & Test, 2023, 49(3): 91-95.
[14] KABANOV A, KRAMAR V, ERMAKOV I. Design and modeling of an experimental ROV with six degrees of freedom[J]. Drones, 2021, 5: 113.
[15] 王欢, 陈春俊, 杨露, 等. 模糊PID迭代学习气压模拟系统控制算法研究[J]. 中国测试, 2021, 47(4): 77-82.
WANG H, CHEN C J, YANG L, et al. Research on control algorithm of air pressure simulation system based on fuzzy PID iterative learning[J]. China Measurement & Test, 2021, 47(4): 77-82.