您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于等效刚度法优化的风力机叶片刚度计算

基于等效刚度法优化的风力机叶片刚度计算

361    2024-07-25

¥0.50

全文售价

作者:余浩1, 马剑龙1,2,3, 吕文春4, 苏宏杰1, 张鹏宇1

作者单位:1. 内蒙古工业大学能源与动力工程学院,内蒙古 呼和浩特 010051;
2. 内蒙古自治区高校可再生能源工程研究中心,内蒙古 呼和浩特 010051;
3. 风能太阳能利用技术教育部重点实验室,内蒙古 呼和浩特 010051;
4. 内蒙古机电职业技术学院科技与职教研究中心,内蒙古 呼和浩特 010070


关键词:风力机叶片;刚度;等效刚度法;变截面悬臂梁;叶片挠度


摘要:

风力机叶片刚度由于非线性且截面变化程度大的特点,针对叶片建模初期刚度的评估问题通常采用刚度展项分布图体现叶片刚度,存在评估叶片刚度的参考参数不够直接、宏观的问题。基于变刚度梁挠度计算的等效刚度法,将叶片等效成变截面悬臂梁,根据叶片特征合理选取边界条件,以叶片建模的截面数据特点为基础,优化原始等效刚度法的计算方式,使该方法更加贴合叶片模型,从而适用于叶片,达到方法优化的目的。利用ANSYS有限元软件进行叶片的预应力模拟实验,得出叶片的挠度模拟数值,以该模拟计算的挠度值为参考,验证优化后方法的有效性。结果表明:优化后的等效刚度法得到的刚度值,在低均布载荷值22.5 Pa下理论计算的挠度值与试验挠度值的误差达到9.68%,减小原始方法计算的误差贴近叶片模型,可用于叶片刚度估算,为叶片的刚度计算提供新方法。


Calculation of wind turbine blade stiffness based on equivalent stiffness method optimization
YU Hao1, MA Jianlong1,2,3, Lü Wenchun4, SU Hongjie1, ZHANG Pengyu1
1. School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China;
2. Engineering Research Center of Renewable Energy at Universities of Inner Mongolia Autonomous Region, Hohhot 010051, China;
3. Key Laboratory of Wind Energy and Solar Energy Technology, Ministry of Education, Hohhot 010051, China;
4. Research Center of Technology and Vocational Education, Inner Mongolia Technical College of Mechanics and Electrics, Hohhot 010070, China
Abstract: Wind turbine blade stiffness due to the characteristics of nonlinear and big section of variations, for modeling the initial stiffness assessment questions usually adopt stiffness elements distribution. This article is based on the equivalent stiffness method of variable stiffness of beam deflection, the leaves reduced to equivalent variable cross-section cantilever beam, according to the characters of blade selection reasonable boundary conditions. Based on the cross section data characteristics of blade modeling, optimization of the original the calculation of equivalent stiffness method, make the method more joint blade model, which applies to blades, to achieve optimization. The use of ANSYS finite element software for blade of prestressed simulation experiment, draw a blade deflection simulation numerical to the simulation calculation of the deflection value for reference, to demonstrate the effectiveness of the optimized method. Results show that the optimized equivalent stiffness method to get the stiffness value, under the uniformly distributed load at a low value of 22.5 Pa deflection of theoretical calculation value and experimental value of deflection error of 9.68%, reduces the error of the original method to calculate and close to the blad model, can be used in the blade stiffness estimation, provides a new method for blade stiffness calculation.
Keywords: wind turbine blades;stiffness;equivalent stiffness method;variable cross-section cantilever beam;leaf blade deflection
2024, 50(7):47-52  收稿日期: 2022-08-22;收到修改稿日期: 2022-10-08
基金项目: 国家自然科学基金项目(51966014);内蒙古自治区科技计划项目(2021GG0436);内蒙古自治区高等学校科学研究项目(NJZZ21067);内蒙古机电职业技术学院科学研究项目( NJDZR2201 )
作者简介: 余浩(1998-),男,湖北黄冈市人,硕士研究生,专业方向为叶片结构性能研究。
参考文献
[1] 洪星. 基于气动性能与截面刚度特性的风力机翼型廓线设计研究[D]. 武汉: 湖北工业大学, 2019.
HONG X. Research on wind turbine airfoil profile design based on aerodynamic performance and cross section stiffness characteristics[ D ]. Wuhan: Hubei University of Technology, 2019.
[2] 白学宗, 安宗文, 侯运丰, 等. 低速冲击载荷下的风电叶片刚度退化规律[J]. 太阳能学报, 2022, 43(1): 132-139.
BAI X Z, AN Z W, HOU Y F, et al. Stiffness degradation rule of wind turbine blade under low-velocity impact load[J]. Acta Energiae Solaris Sinica, 2022, 43(1): 132-139.
[3] 吕文春, 马剑龙, 陈雅男. 风轮固有频率随材质参数变化的规律研究[J]. 中国测试, 2023, 49(7): 54-60,75.
LÜ W C, MA J L, CHEN Y N. Research on the law of natural frequency of wind turbine with different material parameters[J]. China Measurement & Testing, 2023, 49(7): 54-60,75.
[4] 钟贤和, 戚中浩, 曾明伍. 风电叶片刚度的影响因素和简化计算方法[C]//中国动力工程学会透平专业委员会2013年学术研讨会论文集, 2013.
ZHONG X H, QI Z H, ZENG M W. The influence and simplified calculation methods for stiffness of wind turbine blades[C]//Proceedings of the 2013 Academic Symposium of the Turbine Professional Committee of the Chinese Society of Power Engineering, 2013.
[5] FERNANDEZ G, USABIAGA H, VANDEPITTE D. An efficient procedure for the calculation of the stress distribution in a wind turbine blade under aerodynamic loads[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 172: 42-54.
[6] 秦超, 侯彬彬, 陈康, 等. 大型分段式风电叶片刚度及模态有限元分析[J]. 玻璃钢/复合材料, 2016(12): 34-37.
QIN C, HOU B B, CHEN K, et al. Stiffness and modal Large sectional type wind turbine blade finite element modeling and stiffiness and model analysis[J]. Composites Science and Engineering, 2016(12): 34-37.
[7] 王同光. 风力机叶片结构设计[M]. 北京: 科学出版社, 2015.
WANG T G. Structural design of wind turbine blade[M]. Beijing: Science Press, 2015.
[8] 胡丹梅, 孙凯, 张志超. 风力机模型叶片结构设计计算[J]. 可再生能源, 2013, 31(6): 56-60, 65.
HU D M, SUN K, ZHANG Z C. The calculation of blade structure design for wind turbine model[J]. Renewable Energy Resources, 2013, 31(6): 56-60, 65.
[9] 邹家兴. 用等效刚度法计算变截面梁的变形[J]. 农田水利与小水电, 1995(9): 36-38.
ZOU J X. Equivalent stiffness method is used to calculate the deformation of variable cross-section beams[J]. China Rural Water and Hydropower, 1995(9): 36-38.
[10] 李正良. 变刚度梁的计算[M]. 北京: 人民交通出版社, 1996.
LI Z L. Calculation of variable stiffness beams[M]. Beijing: China Communication Press, 1996.
[11] 何佳浩, 张文伟, 邓航, 等. 风电叶片静力试验配载优化与验证[J]. 复合材料科学与工程, 2021(9): 18-21.
HE J H, ZHANG W W, DENG H, et al. Optimization and verification of static test for wind turbine blades[J]. Composites Science and Engineering, 2021(9): 18-21.
[12] WALTERRUDIN, RUDIN, 赵慈庚, 等. 数学分析原理[M]. 北京: 机械工业出版社, 2004.
WALTERRUDIN, RUDIN, ZHAOC G, et al. Mathematical analysis principle[M]. Beijing: China Machine Press, 2004.
[13] 刘鸿文. 高等材料力学[M]. 北京: 高等教育出版社, 1985.
LIU H W. Higher mechanics of materials[M]. Beijing: Higher Education Press, 1985.