您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>电梯节能增效意义及能效测试技术分析

电梯节能增效意义及能效测试技术分析

747    2024-07-25

¥0.50

全文售价

作者:邹皓1,2, 卢毅2, 张廷杰1, 于超2, 张甜甜1

作者单位:1. 四川省特种设备检验研究院,四川 成都 610000;
2. 四川大学,四川 成都 610065


关键词:电梯能效;能效测试;模拟法;空载法


摘要:

以“双碳”目标为指引,受环境保护、降本增效等因素影响,各大电梯生产及使用企业对电梯能效测试技术的需求越来越高。在此背景下,该文从政策、标准以及技术3个方面分析电梯节能增效的必要性;介绍驱动和控制系统、能量回馈装置等电梯能效影响因素;归纳电梯能效测试方法,并引入一则电梯能效测试实例对比测试结果;最后从测试方法标准化和监测产品智能化两方面提出电梯能效测试技术发展方向。研究表明:能效测试是当前国内外电梯能效优化的基础;空载法测试效率更高,需优化载荷系数动态取值方案提高结果准确度;在线监测技术应用比较缺乏。


Elevator energy saving and energy efficiency testing technology
ZOU Hao1,2, LU Yi2, ZHANG Tingjie1, YU Chao2, ZHANG Tiantian1
1. Sichuan Special Equipment Inspection and Research Institute, Chengdu 610000, China;
2. Sichuan University, Chengdu 610065, China
Abstract: Guided by the "double carbon" goal, affected by factors such as environmental protection, cost reduction and efficiency increase, major elevator production and use enterprises have an increasing demand for elevator energy efficiency testing technology. In this context, this paper analyzes the necessity of elevator energy efficiency and efficiency improvement from three aspects: policy, standard and technology, introduces the influencing factors of elevator energy efficiency such as drive and control system and energy feedback device, summarizes the elevator energy efficiency test method, and introduces an elevator energy efficiency test example to compare the test results, and finally puts forward the development direction of elevator energy efficiency test technology from two aspects: test method standardization and monitoring product intelligence. The results show that the energy efficiency test is the basis of the current energy efficiency optimization of elevators at home and abroad, the no-load method is more efficient, and the dynamic value scheme of the load coefficient needs to be optimized to improve the accuracy of the results, and the application of online monitoring technology is relatively lacking.
Keywords: elevator energy efficiency;energy efficiency testing;simulation method;empty load method
2024, 50(7):1-9  收稿日期: 2024-04-12;收到修改稿日期: 2024-05-17
基金项目: 四川省市场监督管理局科技计划项目(SCSJZ2023007)
作者简介: 邹皓(1992-),男,四川岳池县人,高级工程师,硕士,主要从事电梯质量控制及技术经济研究。
参考文献
[1] ALMEIDA D A, HIRZEL S, PATRÃO C, et al. Energy-efficient elevators and escalators in Europe: An analysis of energy efficiency potentials and policy measures[J]. Energy & Buildings, 2012, 47.
[2] 刘桂雄, 朱海兵, 何若泉, 等. 电梯能效实时记录仪及系统研制[J]. 中国测试, 2012, 38(6): 44-48.
LIU G X , ZHU H B, HE R Q, et al. Development of real-time recorder and system for elevator energy efficiency [J]. China Measurement & Test, 2012, 38(6): 44-48.
[3] 赵斌, 权龙, 郝云晓. 电-液混合驱动曳引电梯特性及能效分析[J]. 机械工程学报, 2016, 52(4): 192-198.
ZHAO B, QUAN L, HAO Y X. Analysis of characteristics and energy efficiency of electric-hydraulic hybrid drive traction elevator[J]. Journal of Mechanical Engineering, 2016, 52(4): 192-198.
[4] JERAPUTRA C, TIPTIPAKORN S. Performance and economic analysis of a plug and play regenerative brake for improving energy efficiency for traction elevators[J]. IOP Conference Series: Earth and Environmental Science, 2017, 67(1).
[5] MARTIN M, LUKA P, MARTINA K. Supercapacitor-based energy storage in elevators to improve energy efficiency of buildings[J]. Applied Sciences, 2022, 12(14): 7184.
[6] 刘华军, 石印, 郭立祥, 等. 新时代的中国能源革命: 历程、成就与展望[J]. 管理世界, 2022, 38(7): 6-24.
LIU H J, SHI Y, GUO L X, et al. China's energy revolution in the new era: progress, achievements, and prospects[J]. Management World, 2022, 38(7): 6-24.
[7] 中国建筑能耗与碳排放研究报告(2022年)[J]. 建筑, 2023(2): 57-69.
China building energy consumption and carbon emissions research report (2022) [J]. Architecture, 2023(2): 57-69.
[8] 孙珂. 全社会用电量和发电装机容量均实现增长 预计2023年电力消费需求增速将提高[N]. 国家电网报, 2023-01-31(005).
SUN K. Both total electricity consumption and installed power capacity have increased, with an expected acceleration in electricity consumption demand growth in 2023 [N]. State Grid News, 2023-01-31(005).
[9] 庄贵阳, 魏鸣昕. 城市引领碳达峰、碳中和的理论和路径[J]. 中国人口·资源与环境, 2021, 31(9): 114-121.
ZHUANG G Y, WEI M X. Theories and pathways for cities to lead carbon peaking and carbon neutrality[J]. China Population, Resources and Environment, 2021, 31(9): 114-121.
[10] 恩旺, 刘子金, 张淼. 中国电梯行业的技术发展与趋势[J]. 建筑科学, 2018, 34(9): 110-118.
EN W, LIU Z J, ZHANG M. Technical development and trends of china's elevator industry[J]. Building Science, 2018, 34(9): 110-118.
[11] 陈继文, 李鑫, 张树昌, 等. 基于ARM的绿色建筑电梯能耗远程监测系统[J]. 现代制造工程, 2018(9): 6-10.
CHEN J, LI X, ZHANG S H, et al. Green building elevator energy consumption remote monitoring system based on ARM[J]. Modern Manufacturing Engineering, 2018(9): 6-10.
[12] 程燕林, 代涛, 丁予业等. 技术经济安全: 研究重点、演化机理和评估框架[J]. 中国科学院院刊, 2023, 38(4): 541-552.
CHENG Y L, DAI T, DING Y Y, et al. Techno-economic security: research focus, evolution mechanism, and evaluation framework[J]. Bulletin of the Chinese Academy of Sciences, 2023, 38(4): 541-552.
[13] 侯靖琳, 仇润鹤, 薛季爱,等. 基于知识图谱嵌入和补全的电梯故障预测[J]. 计算机工程与设计, 2022, 43(1): 224-230.
HOU J L, QIU R H, XUE J A, et al. Elevator fault prediction based on knowledge graph embedding and completion[J]. Computer Engineering and Design, 2022, 43(1): 224-230.
[14] 李少纲, 葛超明. 浅谈电梯节能技术的推广[J]. 能源与节能, 2011(6): 41-42.
LI S G, GE C M. Discussion on the promotion of elevator energy-saving technology[J]. Energy and Conservation, 2011(6): 41-42.
[15] 张吉, 夏尚, 陈云荣. 特种设备能效的评价与展望[J]. 机电产品开发与创新, 2012, 25(5): 32-34.
ZHANG J, XIA S, CHEN Y R. Evaluation and prospect of special equipment energy efficiency[J]. Development & Innovation of Machinery & Electrical Products, 2012, 25(5): 32-34.
[16] 刘计龙, 肖飞, 沈洋, 麦志勤, 李超然. 永磁同步电机无位置传感器控制技术研究综述[J]. 电工技术学报, 2017, 32(16): 76-88.
LIU J L, XIAO F, SHEN Y, MAI Z Q, LI C R. Overview of sensorless control techniques for permanent magnet synchronous motors[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 76-88.
[17] 赖跃阳. 电梯节能前景分析[J]. 中国特种设备安全, 2010, 26(2): 75-78.
LAI Y Y. Analysis of elevator energy saving prospects[J]. China Special Equipment Safety, 2010, 26(2): 75-78.
[18] 张杰, 赵斌, 郝云晓. 基于变排量液压泵/马达的电液混合驱动曳引电梯节能系统研究[J]. 液压与气动, 2020(9): 153-160.
ZHANG J, ZHAO B, HAO Y X. Research on energy-saving eystem of electro-hydraulic eybrid drive traction elevator based on variable displacement hydraulic pump/motor[J]. Chinese Hydraulics & Pneumatics, 2020(9): 153-160.
[19] 邓丛瑶, 罗珊. 基于 Incopat 的电梯群控专利技术分析[J]. 中国科技信息, 2023(7): 19-21.
DENG C Y, LUO S. Patent technology analysis of elevator group control based on incopat[J]. China Science and Technology Information, 2023(7): 19-21.
[20] TAPIO T, JARI Y. Evolutionary bi-objective optimisation in the elevator car routing problem[J]. European Journal of Operational Research, 2004, 169(3): 960-977.
[21] 曾新红, 钟展金, 张锐林, 等. 基于 S7-1200 与 WinCC 的六部十层电梯控制系统仿真设计[J]. 轻工科技, 2021, 37(3): 92-94.
ZENG X H, ZHONG Z J, ZHANG R L, et al. Simulation Design of Six-Elevator Ten-FloorControl System Based on S7-1200 and WinCC[J]. Light Industry Science and Technology, 2021, 37(3): 92-94.
[22] 刘耀武, 聂风华, 苏强, 等. 具有时间约束的电梯节能调度算法[J]. 系统工程理论与实践, 2013, 33(9): 2339-2346.
LIU Y W, NIE F H, SU Q, et al. Elevator energy-saving scheduling algorithm with time constraints[J]. Systems Engineering - Theory & Practice, 2013, 33(9): 2339-2346.
[23] NARAYANAN H S, KARUNAMURTHY V, KUMAR R B. Intelligent elevator management system using image processing[C]//Sixth International Conference on Graphic and Image Processing (ICGIP 2014). International Society for Optics and Photonics, 2015.
[24] BEAMURGIA M, BASAGOITI R, RODRÍGUEZ I, et al. Improving waiting time and energy consum ption performance of a bi-objective genetic algorithm embedded in an elevator group control system through passenger flow estimation[J]. Soft Computing, 2022, 26(24): 13673-13692.
[25] VODOPIJA A, STORK J, BARTZ-BEIELSTEIN T, et al. Elevator group control as a constrained multi-objective optimization problem[J]. Applied Soft Computing Journal, 2022: 115.
[26] 张家瑞, 李海鹰, 苗建瑞, 等. 电梯群控系统调度模型及其改进 ADMM 分解算法[J]. 控制与决策, 2023, 38(1): 39-48.
ZHANG J R, LI H Y, MIAO J R, et al. Dispatching model of elevator group control system and its improved ADMM decomposition algorithm[J]. Control and Decision, 2023, 38(1): 39-48.
[27] 石文明, 刘意华, 吕湘连, 等. 超级电容器材料及应用研究进展[J]. 微纳电子技术, 2022, 59(11): 1105-1118.
SHI W M, LIU Y H, LYU X L, et al. Research Progress on Supercapacitor Materials and Applications[J]. Micro-Nano Electronic Technology, 2022, 59(11): 1105-1118.
[28] ZHONG Y D, WANG T, YAN M,et al. Carbon nanofibers derived from cellulose via molten-salt method as supercapacitor electrode[J]. International Journal of Biological Macromolecules, 2022, 207(15): 541-548.
[29] ZAULKIFLEE N D, AHMAD A L, LOW S C, et al. Recent advances on the utilization of nanosheets as electrode material for supercapacitor application[J]. Journal of Energy Storage, 2022, 55(30): 105697.
[30] RASHIDI, NOR A . Biomass as activated carbon precursor and potential in supercapacitor applications[J]. Biomass Conversion and Biorefinery, 2022: 1-15.
[31] 王婧怡, 翁绍捷, 张国健. 超级电容驱动的电梯制动能量回馈损耗控制[J]. 计算机仿真, 2021, 38(5): 219-222.
WANG J Y, WENG S J, ZHANG G J. Control of brake energy feedback loss of elevator driven by super capacitor [J]. Computer Simulation, 2021, 38(5): 219-222.
[32] Forward electronics company limited; patent application titled "elevator automatic rescue And energy-saving device and control method for same and super capacitor module" published online (USPTO 20180229968)[P]. Politics & Government Week, 2018.
[33] 电梯、自动扶梯和自动人行道的能量性能 第 1 部分: 能量测量与验证:GB/T 30559.1-2014[S].北京:中国质检出版社, 2014.
Energy performance of lifts, escalators and passenger conveyors - part 1: energy measurement and verification: GB/T 30559.1-2014[S]. Beijing: China Quality Inspection Press, 2014.
[34]  电梯、自动扶梯和自动人行道的能量性能第 2 部分: 电梯的能量计算与分级: GB/T 30559.2-2017[S]. 北京: 中国质检出版社, 2017.
Energy performance of lifts, escalators and passenger conveyors - part 2: energy calculation and classification for lifts: GB/T 30559.2-2017[S]. Beijing: China Quality Inspection Press, 2017.
[35] 电梯、自动扶梯和自动人行道的能量性能 第 3 部分: 自动扶梯和自动人行道的能量计算与分级: GB/T 30559.3-2017 [S]. 北京: 中国质检出版社, 2017.
Energy performance of lifts, escalators and passenger conveyors - part 3: energy calculation and classification for escalators and passenger conveyors: GB/T 30559.3-2017[S]. Beijing: China Quality Inspection Press, 2017.
[36] 电梯节能监测与改造技术要求: DB21T 3790-2023[S]. 辽宁省市场监督管理局, 2023.
Technical requirements for elevator energy saving monitoring and retrofitting: DB21T 3790-2023[S]. Liaoning Provincial Market Supervision and Administration Bureau, 2023.
[37] 电梯能源效率评价导则: DB34/T 3892-2021[S]. 安徽省市场监督管理局, 2021.
guidelines for elevator energy efficiency evaluation: DB34/T 3892-2021S]. Anhui Provincial Market Supervision and Administration Bureau, 2021.
[38] 电梯能效测试与评价规则: DB42/T 1521-2019[S]. 湖北省市场监督管理局, 2019.
Rules for elevator energy efficiency testing and evaluation: DB42/T 1521-2019[S]. Hubei Provincial Market Supervision and Administration Bureau, 2019.
[39] 北京市地方标准. 电梯节能监测: DB11T 1161-2015[S]. 北京市质量技术监督局, 2015.
Elevator energy saving monitoring: DB11T 1161-2015[S]. Beijing Municipal Bureau of Quality and Technical Supervision, 2015.
[40] 赵钤, 张天宏, 王瑶, 等. 电动螺旋桨综合能效测试研究[J]. 中国测试, 2023, 49(12): 108-114.
ZHAO Q, ZHANG T, WANG Y, et al. Experimental study on comprehensive energy efficiency measurement of electric propeller[J]. China Measurement& Test, 2023, 49(12): 108-114.
[41] 陈邵有, 刘英博. 燃煤工业锅炉能效提升节能量测量和验证方法研究[J]. 中国测试, 2020, 46(S1): 158-160.
CHEN S Y, LIU Y B. Research on method of energy saving audit about coal-fired industrial boilers energy efficiency increased[J]. China Measurement& Test, 2020, 46(S1): 158-160.