您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>尾波干涉法检测混凝土应力损伤状态试验研究

尾波干涉法检测混凝土应力损伤状态试验研究

363    2024-05-24

免费

全文售价

作者:徐晓1, 张鹏飞1, 郝文秀1, 郑兴莲2, 朱常志1

作者单位:1. 河北农业大学城乡建设学院,河北 保定 071001;
2. 保定职业技术学院,河北 保定 071051


关键词:混凝土;尾波波速变化率;应力状态;模型;损伤状态


摘要:

为了更加精确地检测混凝土内部应力损伤状态,利用Ritec非线性高能超声测试系统对4种不同强度等级的混凝土试块和短柱进行超声波尾波干涉试验,建立尾波波速变化率-应力(dv/v-$ \sigma $)曲线,根据曲线斜率构造尾波波速变化率与应力状态模型并对混凝土损伤状态进行研究。结果表明:所构造的应力状态模型将混凝土的损伤过程分为3部分:0~40%极限抗压强度、40%~70%极限抗压强度、70%极限抗压强度至破坏。根据应力状态模型可以清晰地对混凝土在承受荷载过程中的应力区间及损伤状态进行判定,进而评估其安全状态。


Experimental study on detecting stress damage state of concrete by coda interferometry
XU Xiao1, ZHANG Pengfei1, HAO Wenxiu1, ZHENG Xinglian2, ZHU Changzhi1
1. School of Urban and Rural Construction, Hebei Agricultural University, Baoding 071001, China;
2. Baoding Vocational and Technical College, Baoding 071051, China
Abstract: In order to accurately detect the internal stress damage state of concrete, the ultrasonic coda interference test is carried out on four concrete test blocks and short columns with different strength levels by using Ritec nonlinear high-energy ultrasonic testing system. The coda velocity change rate-stress (dv/v-$ \sigma $) curve is established, the coda velocity change rate and stress state model are constructed according to the curve slope, and the concrete damage state is studied. The results show that the damage process of concrete is divided into three parts: 0-40% ultimate compressive strength, 40%-70% ultimate compressive strength and 70% ultimate compressive strength to failure. According to the stress state model, the stress range and damage state of concrete in the process of bearing load can be clearly determined, and then its safety state can be evaluated.
Keywords: concrete;coda velocity variation;stress state;model;damage state
2024, 50(5):153-159  收稿日期: 2022-04-23;收到修改稿日期: 2022-06-28
基金项目: 河北省重点研发计划项目(21327209D)
作者简介: 徐晓(1975-),女,河北泊头市人,副教授,硕士,主要从事结构抗震与检测的研究。
参考文献
[1] 肖卓, 高原. 尾波干涉原理及其应用研究进展综述[J]. 地震学报, 2015, 37(3): 516-526
XIAO Z, GAO Y. A review on the theory of coda wave interferometry and its research progress[J]. Acta Seismologica Sinica, 2015, 37(3): 516-526
[2] SNIEDER R. Coda wave interferometry and the equilibration of energy in elastic media.[J]. Physical Eeview. E, Statistica, Nonlinear, and Soft Matter Physics, 2002, 66(4): 046615
[3] ARNAUD D, CEDRIC D. Embedding ultrasonic transducers in concrete: A lifelong monitoring technology[J]. Construction and Building Materials, 2019, 194: 42-50
[4] 郑罡, 吴俊葶, 黎志谋, 等. T梁在三点弯曲荷载作用下的超声测试[J]. 北京工业大学学报, 2020, 46(2): 162-168
ZHENG G, WU J T, LI Z M, et al. Ultrasonic testing of t-beam under three-point bending load[J]. Journal of Beijing University of Technology, 2020, 46(2): 162-168
[5] 郭增伟, 田川, 郑罡, 等. 混凝土工字梁三点弯曲荷载超声测试[J]. 重庆大学学报, 2019, 42(11): 88-97
GUO Z W, TIAN C, ZHENG G, et al. Three-point bending load ultrasonic test of concrete I-beam[J]. Journal of Chongqing University, 2019, 42(11): 88-97
[6] JIANG H, ZHAN H, ZHANG J, et al. Diffusion coefficient estimation and its application in interior change evaluation of full-size reinforced concrete structures[J]. Journal of Materials in Civil Engineering, 2019, 31(3): 04018398
[7] ZHAN H, JIANG H, ZHUANG C, et al. Estimation of stresses in concrete by using coda wave interferometry to establish an acoustoelastic modulus database[J]. Sensors, 2020, 20(14): 4031
[8] CLAUB F. Correlation of load-bearing behavior of reinforced concrete members and velocity changes of coda waves[J]. Materials, 2022, 15(3): 738-738
[9] 赵元明, 郭怀攀. 基于尾波干涉法反演结构微小损伤[J]. 测试技术学报, 2019, 33(2): 110-115
ZHAO Y M, GUO H P. Inverse structure damage based on tail wave interference[J]. Journal of Test and Measurement Technology, 2019, 33(2): 110-115
[10] 郝绍菊, 马竞. 混杂纤维协同增强轻骨料混凝土力学性能试验研究[J]. 中国测试, 2022, 48(6): 128-133
HAO S J, MA J. Hybrid fiber synergistic reinforcement of the mechanical properties of lightweight aggregate concrete[J]. China Measurement & Test, 2022, 48(6): 128-133