您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>舰船水平向冲击环境测量仪研制

舰船水平向冲击环境测量仪研制

354    2024-05-24

免费

全文售价

作者:陈辉, 刘建湖

作者单位:中国船舶科学研究中心,江苏 无锡 214082


关键词:水平冲击环境;测量仪;冲击测量


摘要:

舰船设备的冲击环境测量是实船及模型水下爆炸试验研究中的一项重要内容,但多方向冲击输入载荷的耦合效应使获取可靠的水平向冲击环境数据成为难题。为此,从适配测量装置垂向与水平向刚度的角度出发,参照现有低频簧片仪安装频率分布,并以水平式强碰撞冲击机考核冲击环境为指标,开展两端固支梁式、偏心轮式水平向冲击环境测量仪的设计工作,建立水平向冲击载荷作用下两种形式簧片的单自由度系统运动方程,并推导出簧片冲击响应与冲击位移谱成正比关系,则通过测量簧片冲击响应即可推算出安装部位的冲击环境。在此基础上,设计系列满足安装频率分布要求的簧片,并加工水平向冲击环境测量仪原理样机。通过水平式强碰撞冲击机试验检测,水平向冲击环境测量仪与加速度计获取的冲击环境数据可以相互验证,测量仪设计是合理有效的。


Instrument development for measuring horizontal shock environment of ships
CHEN Hui, LIU Jianhu
China Ship Scientific Research Center, Wuxi 214082, China
Abstract: The measurement of the on-board equipment’s shock environment is an important content in the underwater-explosion tests of ships and models. But, gaining the reliable horizontal shock environment is a challenge because of the multi-direction shock loads’ coupling. For this reason, the instruments based on the clamped-clamped beam and eccentric-cam are designed for measuring horizontal shock environment according to the installation frequency range of the low frequency reed instrument and the examination environment of the horizontal-direction shock machine from the adaptation of vertical and horizontal stiffness. The single degree-of-freedom system’s motion equation of two reeds are established. The proportional relationship of the reeds’ impact response and the shock displacement spectrum are derived. Then, the shock environment of the installation position can be calculated by measuring the the reeds’ impact response. On this basis, the series reeds meeting the installation frequency requirements and the prototype of the measuring horizontal shock environment instrument are designed and developed. Through the shock tests on the horizontal-direction shock machine, the measured dates obtained by the measuring horizontal shock environment instrument and the accelerometer can verify each other. The results show that the design of the measuring horizontal shock environment instrument is reasonable and available.
Keywords: horizontal shock environment;measuring instrument;shock measurement
2024, 50(5):100-105  收稿日期: 2022-03-23;收到修改稿日期: 2022-06-02
基金项目:
作者简介: 陈辉(1980-),男,江苏泰州市人,高级工程师,硕士,研究方向为舰船抗爆抗冲击。
参考文献
[1] C. M. 哈里斯, C. E. 克瑞德. 冲击和振动手册[M]. 北京: 科学出版社, 1990: 417-436.
[2] 谢浩, 冯麟涵, 吴静波, 等. 舰船冲击谱若干计算方法比较研究[J]. 噪声与振动控制, 2017, 37(4): 115-120.
XIE H, FENG L H, WU J B, et al. Comparative study on several calculation methods for ship's shock spectra[J]. Noise and Vibration Control, 2017, 37(4): 115-120.
[3] SMALLWOOD D O. Shock response spectrum at low frequencies[J]. Shock and Vibration Bulletin, SAVIAC, 1986, 1: 279-288.
[4] 杜志鹏, 汪玉, 杨洋, 等. 舰艇水下爆炸冲击信号拟合及应用[J]. 噪声与振动控制, 2010, 29(3): 182-184.
DU Z P, WANG Y, YANG Y, et al. Curve fit method for naval underwater explosion shock signal and its application[J]. Journal of Vibration and Shock, 2010, 29(3): 182-184.
[5] GABERSON H A, CHALMERS R H. Modal velocity as a criterion of shock severity[J]. Shock and Vibration Bulletin, 1969, 40(2): 31-49.
[6] DATIG M, SCHLUMANN T. Perfoemance and limitations of Hibert-Huang transformation (HHT) with an application to irregular water waves[J]. Ocean Engineering, 2004, 31(14): 1783-1834.
[7] 邹瑛珂, 贾云飞, 刘素芸. 一种基于改进EMD分解人车地震动信号识别算法[J]. 中国测试, 2022, 48(4): 85-94.
ZOU Y K, JIA Y F, LIU S Y. Improved EMD decomposition based recognition algorithm for pedestrian and vehicle ground motion signals[J]. China Measurement & Test, 2022, 48(4): 85-94.
[8] 陈辉, 潘建强, 唐佳炜,等. 水下非接触爆炸条件下舰船冲击环境测试相关技术研究[J]. 计算机测量与控制, 2011, 19(11): 2635-2640.
CHEN H, PAN J Q, TANG J W, et al. Researches of metrical technique of shock environment UNDEX of warships[J]. Computer Measurement & Control , 2011, 19(11): 2635-2640.
[9] 潘建强, 唐佳炜, 张克明. 簧片式冲击谱测量仪电测技术研究[J]. 应用科技, 2010, 37(11): 14-17.
PAN J Q, TANG J W, ZHANG K M. The electromotive technology based on sheet metal-spring which is used to measure shock spectrum[J]. Applied Science and Technology, 2010, 37(11): 14-17.
[10] RUDOLPH J S, HENRY C P. 舰船冲击分析与设计[M]. 哈尔滨:哈尔滨工程大学出版社, 2006: 43-46.
[11] 曾泽璀, 闫明, 赵鹏铎, 等. 中低频冲击响应谱测量技术综述[J]. 造船技术, 2016, 4: 30-33,41.
ZENG Z C, YAN M, ZHAO P D, et al. Review on measurement technology of middle-low frequency shock response spectrum[J]. Marine Technology, 2016, 4: 30-33,41.
[12] 潘建强, 陈辉, 刘建湖, 等. 实船和模型水下非接触爆炸条件下舰船冲击环境测量方法: CB20075-2012[S]. 北京: 中国船舶工业综合技术经济研究院, 2013.
[13] 张磊, 杜志鹏, 吴静波, 等. 200 t级浮动冲击平台水下爆炸试验低频冲击响应数据分析[J]. 中国舰船研究, 2018, 13(3): 60-65.
ZHANG L, DU Z P, WU J B, et al. Low-frequency shock response data analysis of underwater explosion test of 200-ton class floating shock platform[J]. Chinese Journal of Ship Research, 2018, 13(3): 60-65.
[14] 潘建强, 刘建湖, 杨云川, 等. 水平式强碰撞冲击机冲击动响应分析[C]//第十届全国冲击动力学学术会议, 2011.
[15] EDWARD A J. Shock response spectrum [J]. Sound and Vibration, 2009, 43(6): 6-15.
[16] GABERSON H A. Using the velocity shock spectrum to predict shock damage [J]. Sound and Vibration, 2003, 37(9): 5-6.
[17] 毛谦德, 李振清. 袖珍机械设计师手册[M]. 2版.北京: 机械工业出版社, 2002: 270, 1106-1107.
[18] 陈辉, 江楠. 用于冲击加速度测量的机械滤波器设计[J]. 中国测试, 2018, 44(10): 107-114.
CHEN H, JIANG N. Design of mechanical filter for shock acceleration measuring[J]. China Measurement & Test, 2018, 44(10): 107-114.