您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于灰色关联熵的冻融作用下混凝土力学性能与孔隙结构模型研究

基于灰色关联熵的冻融作用下混凝土力学性能与孔隙结构模型研究

326    2024-05-24

免费

全文售价

作者:陈延飞1,2, 艾杰2, 车俊2, 袁文金2, 于本田1, 李双洋3

作者单位:1. 兰州交通大学土木工程学院,甘肃 兰州 730000;
2. 甘肃省交通规划勘察设计院股份有限公司,甘肃 兰州 730000;
3. 中国科学院 西北生态环境资源生态研究院冻土工程国家重点实验室,甘肃 兰州 730000


关键词:混凝土;冻融循环;力学性能;孔隙结构;灰熵关联度


摘要:

为研究混凝土在冻融循环过程中孔隙结构对力学性能的影响,对不同冻融循环次数的混凝土进行力学性能、扫描电子显微镜(SEM)、低场核磁共振(NMR)等试验,并利用灰色关联熵方法建立冻融循环过程中抗压强度与孔隙结构之间的数学模型。结果表明:随着冻融循环次数的增加,混凝土力学性能下降明显,孔隙度增加且$ {T_2} $谱总面积逐渐增加;冻融循环过程中对力学性能影响最大的两个因素分别为少害孔孔隙占比以及自由流体饱和度(FFS),对应的灰熵关联度分别为0.9893和0.9952。以抗压强度为参考,以自由流体饱和度和少害孔孔隙占比为比较序列建立GM(1,3)模型,模型预测值与试验平均值相对误差仅为0.29 %,表明预测模型可以为混凝土冻融循环过程中力学性能提供公式依据。研究成果有助于加深对冻融循环过程中混凝土结构损伤演化规律的认识。


Study on mechanical properties and pore structure model of concrete under freeze-thaw action based on grey correlation entropy
CHEN Yanfei1,2, AI Jie2, CHE Jun2, YUAN Wenjin2, YU Bentian1, LI Shuangyang3
1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China;
2. Gansu Province Transportation Planning Survey & Design Institute Co., Ltd., Lanzhou 730000, China;
3. State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Abstract: In order to study the influence of pore structure on the mechanical properties of concrete during freeze-thaw cycles, the compressive strength, dynamic elastic modulus, scanning electron microscope (SEM), low-field nuclear magnetic resonance (NMR) and other tests of concrete with different freeze-thaw cycles were carried out, and the mathematical model between compressive strength and pore structure during freeze-thaw cycles was established by using the grey correlation entropy method. The results show that with the increase of freeze-thaw cycles, the mechanical properties of concrete decrease obviously, the porosity increases and the total spectral area increases gradually. The two factors that have the greatest influence on the compressive strength during freeze-thaw cycle are the proportion of less harmful pores and free fluid saturation (FFS), and the grey entropy correlation degree is 0.9893 and 0.9952 respectively. The GM (1,3) model is established based on the compressive strength, free fluid saturation and the proportion of less harmful pores. The relative error between the predicted value of the model and the average value of the test is 0.29%, which indicates that the predicted model can provide a formula basis for the mechanical properties of concrete during freeze-thaw cycles. The research results are helpful to deepen the understanding of the damage evolution law of concrete structures during freeze-thaw cycles.
Keywords: concrete;freeze-thaw cycle;mechanical properties;pore structure;grey entropy correlation degree
2024, 50(5):29-35  收稿日期: 2022-02-09;收到修改稿日期: 2022-04-12
基金项目: 中国科学院重点部署项目(ZDRW-ZS-2020-1);中国铁路总公司科技研究开发计划(P2018G004)
作者简介: 陈延飞(1994-),男,甘肃兰州市人,助理工程师,硕士,研究方向为高性能混凝土结构研究。
参考文献
[1] 何鹏飞, 马巍. 我国寒区输水工程研究进展与展望[J]. 冰川冻土, 2020, 42(1): 182-194
HE P F, MA W. Study of canals in cold regions of China:achievements and prospects[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 182-194
[2] 郑元勋, 杨培冰, 康海贵. 冻融环境下混凝土结构耐久性研究综述[J]. 郑州大学学报(工学版), 2016, 37(5): 27-32
ZHENG Y X, YANG P B, KANG H G. The overview of concrete structure durability under the freeze-thaw condition[J]. Journal of Zhengzhou University(Engineering Science), 2016, 37(5): 27-32
[3] 朱方之, 赵铁军, 王振波, 等. 基于冻融损伤和表面剥落的氯离子扩散模型修正与应用[J]. 建筑材料学报, 2015, 18(6): 1065-1069
ZHU F Z, ZHAO T J, WANG Z B, et al. Modification and application of chloride diffusion model based on frost damage and surface scaling[J]. Journal of Building Materials, 2015, 18(6): 1065-1069
[4] 梅军鹏, 徐智东, 李海南, 等. 蒸汽养护条件下纳米TiO2对粉煤灰-水泥体系早期力学性能的影响[J]. 建筑材料学报, 2021, 24(4): 694-700
MEI J P, XU Z D, LI H N, et al. Influence of nano-TiO2 on the early mechanical properties of fly ash-cement system under steam curing[J]. Journal of Building Materials, 2021, 24(4): 694-700
[5] 牛荻涛, 何嘉琦, 傅强, 等. 碳纳米管对水泥基材料微观结构及耐久性能的影响[J]. 硅酸盐学报, 2020, 48(5): 705-717
NIU D T, HE J Q, FU Q, et al. Effect of carbon nanotubes on microstructure and durability of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2020, 48(5): 705-717
[6] 杨春景, 孙红霞, 朱鹏宇. 硫酸盐侵蚀玄武岩纤维轻骨料混凝土力学性能研究[J]. 中国测试, 2021, 47(6): 68-74
YANG C J, SUN H X, ZHU P Y. Study on mechanical properties of basalt fiber lightweight aggregate concrete eroded by sulfate[J]. China Measurement & Test, 2021, 47(6): 68-74
[7] STEFAN J, JACQUES M, HUGUES H. Sem observations of the microstructure of frost deteriorated and self-healed concretes[J]. Cement and Concrete Research, 1995, 25(8): 1781-1790
[8] KUMAR R, BHATTACHARJEE B. Porosity pore size distribution and in situ strength of concrete[J]. Cement and Concrete Research, 2003, 33(1): 155-164
[9] 田威, 韩女, 张鹏坤. 基于CT技术的混凝土孔隙结构冻融损伤试验[J]. 中南大学学报(自然科学版), 2017, 48(11): 3069-3075
TIAN W, HAN N, ZHANG P K. Experiments on the freeze-thaw damage of concrete porous structure based on CT technique[J]. Journal of Central South University(Science and Technology), 2017, 48(11): 3069-3075
[10] YUAN J, LIU Y, LI H, et al. Experimental investigation of the variation of concrete pores under the action of freeze-thaw cycles[J]. Procedia Engineering, 2016, 161: 583-588
[11] LIU H, SUN Z, YANG J, et al. A novel method for semi-quantitative analysis of hydration degree of cement by 1H low-field NMR[J]. Cement and Concrete Research, 2021, 141: 106329.
[12] 李海波, 朱巨义, 郭和坤. 核磁共振T2谱换算孔隙半径分布方法研究[J]. 波谱学杂志, 2008, 25(2): 273-280
LI H B M, ZHU J Y, GUO H K. Methods for calculating pore radius distribution in rock from NMR T2 spectra[J]. Chinese Journal of Magnetic Resonance, 2008, 25(2): 273-280
[13] 普通混凝土长期性能和耐久性试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.
Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture and Building Press, 2009.
[14] 于本田, 陈延飞, 王焕, 等. 大掺量高吸附性石粉高强机制砂混凝土收缩开裂抑制试验[J]. 复合材料学报, 2021, 38(8): 2625-2634
YU B T, CHEN Y F, WANG H, et al. Experiment on control measures of shrinkage and cracking of high strength manufactured sand concrete containing a large amount of high absorbency stone powder[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2625-2634
[15] 吴中伟, 廉慧珍. 高性能混凝土[M]. 北京: 中国铁道出版社, 1999.
WU Z W, LIAN H Z. High performance concrete[M]. Beijing: China Railway Publishing House, 1999.
[16] 王仁远, 申向东, 薛慧君, 等. 浮石混凝土风沙吹蚀与冻融耦合的破坏机理研究[J]. 应用基础与工程科学学报, 2019, 27(2): 418-429
WANG R Y, SHEN X D, XUE H J, et al. Mechanism research on wind-sand erosion and freeze-thaw coupling damage of pumice concrete[J]. Journal of Basic Science and Engineering, 2019, 27(2): 418-429
[17] 邓聚龙. 灰色控制系统(第二版)[M]. 武汉: 华中理工大学出版社, 1993.
[18] LUAN H X, WU J, PAN J Y. Saline water absorption behavior and critical saturation degree of recycled aggregate concrete during freeze-thaw cycles[J]. Construction and Building Materials, 2020, 258: 119640