您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>航空平台地磁矢量匹配导航算法研究进展

航空平台地磁矢量匹配导航算法研究进展

473    2024-05-24

免费

全文售价

作者:陈棣湘, 陈卓, 张琦, 潘孟春

作者单位:国防科技大学智能科学学院,湖南 长沙 410073


关键词:航空平台;地磁矢量;匹配导航算法;神经网络;模式识别


摘要:

航空地磁矢量导航技术因其具有自主、无源、可靠性强的优势,在卫星导航系统受到攻击等情况下可有效发挥替代作用,在军民用领域均具有极高的战略意义和应用价值。航空平台具有飞行速度快、短时间跨越地域广的特性,对地磁矢量测量与导航方法提出高精度和高可靠性等要求。该文梳理近年来航空地磁矢量导航系统的研究与发展现状,介绍地磁矢量导航的关键技术,重点对地磁矢量匹配导航算法的研究进展进行分析。针对现有算法存在的不足,提出进一步提升算法的精度和鲁棒性、发展基于机器学习的地磁矢量匹配导航方法、推动无人机等新型航空平台地磁矢量导航技术发展等后续研究方向,意在促进航空地磁矢量导航技术的进一步发展。


Research progress on geomagnetic vector matching navigation algorithms for aviation platforms
CHEN Dixiang, CHEN Zhuo, ZHANG Qi, PAN Mengchun
College of Intelligence Science and Technology, National University of Defense Technology,Changsha 410073, China
Abstract: Aviation geomagnetic vector navigation technology, due to its advantages of autonomy, passivity, and strong reliability, can effectively play a substitute role in situations such as satellite navigation systems being attacked. It has extremely high strategic significance and application value in both military and civilian fields. Aviation platforms have the characteristics of fast flight speed and short time crossing over wide areas, which puts forward high precision and reliability requirements for geomagnetic vector measurement and navigation methods. The research and development status of aviation geomagnetic vector navigation systems in recent years was reviewed in this article, the key technologies in geomagnetic vector navigation were introduced, and the geomagnetic matching navigation algorithms were analyzed in emphasis. Aiming to the shortcomings of the existed algorithms, some research directions such as the further improvements in accuracy and robustness,the navigation algorithms based on machine learning and the development of geomagnetic vector navigation technology for unmanned aerial vehicles were proposed, which intends to promote the further development of aviation geomagnetic vector navigation technology.
Keywords: aviation platform;geomagnetic vector;matching navigation algorithm;neural network;pattern recognition
2024, 50(5):1-10  收稿日期: 2023-11-29;收到修改稿日期: 2024-01-06
基金项目:
作者简介: 陈棣湘(1970-),男,湖南湘乡市人,教授,研究方向为装备测试计量技术及系统。
参考文献
[1] 翁利斌, 张添翼, 王握文. 地磁导航: 地球母亲的“金手指”[J]. 科学中国人, 2020(19): 78-79.
WENG L B, ZHANG T Y, WANG W W. Geomagnetic navigation: The "golden finger" of mother earth[J]. Sci-Tech Expo, 2020(19): 78-79.
[2] 吴凤贺, 张琦, 潘孟春, 等. 基于ICCP的地磁矢量匹配算法研究[J]. 中国测试, 2018, 44(2): 103-107.
WU F H, ZHANG Q, PAN M C, et al. Study on geomagnetic vector matching algorithm based on ICCP[J]. China Measurement & Test, 2018, 44(2): 103-107.
[3] YUAN R, LIHUI W, KUNJIE L, et al. Improved iterative closest contour point matching navigation algorithm based on geomagnetic vector[J]. Electronics, 2022, 11(796): 796.
[4] DRANSFIELD M, CHRISTENSEN A, LIU G. Airborne vector magnetics mapping of remanetly magnetized banded iron formations at rocklea, western Australia[J]. Exploration Geophysics, 2003, 34(1): 93-96.
[5] HONSHO C, URA T, KIM K. Deep-sea magnetic vector anomalies over the hakurei hydrothermal field and the bayonnaise knoll caldera, Izu-Ogasawara Arc, Japan[J] Journal of Geophysical Research: Solid Earth, 2013, 118(10): 5147-5164.
[6] INOZEMTSEV I. Land-based vector magnetic survey of a bif-hosted iron ore deposit, MARY River, BAFFIN Island, Nunavut[D]. Canada: McMaster University, 2017.
[7] HEJDA P, ČÁPOVÁ D, HUDEČKOVÁ E, et al. Analysis of the czech magnetic anomaly data obtained by ground-based and airborne magnetic surveys[C]//EGU General Assembly Conference Abstracts, 2020.
[8] ALESHIN I, KHOLODKOV K, MALYGIN I, et al. Geomagnetic survey interpolation with the machine learning approach[J]. arXiv preprint, 2022(2210): 3379-3383.
[9] 王劲东, 薛洪波, 张艺腾, 等. 高精度航空地磁矢量测量技术[C]//2018年中国地球科学联合学术年会, 2018.
WANG J D, XUE H B, ZHANG Y T, et al. High precision aerial geomagnetic vector measurement technology[C]//2018 China Earth Science Joint Academic Annual Conference, 2018.
[10] 胡浪. 航空地磁探测中地磁矢量测量误差补偿算法研究[D]. 武汉: 华中科技大学, 2019.
HU L. Research on geomagnetic vector measurement error compensation algorithm in aeromagnetic geomagnetic detection[D]. Wuhan: Huazhong University of Science & Technology, 2019.
[11] 缪林良, 米洒洒, 王玮琳, 等. 航磁矢量测量的误差分析和补偿算法研究[J]. 电子测量与仪器学报, 2021, 35(12): 15-23.
MIAO L L, MI S S, WANG W L, et al. Error analysis and compensation algorithm research of aeromagnetic vector measurement[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(12): 15-23.
[12] 米洒洒. 面向直升机地磁测量系统的航磁补偿算法研究[D]. 武汉: 华中科技大学, 2021.
MI S S. Research on aeromagnetic compensation algorithm for helicopter geomagnetic survey system[D]. Wuhan: Huazhong University of Science & Technology, 2021.
[13] 蔡建平, 廖佳华, 陈洁, 等. 海洋地磁场矢量测量仪支撑装置结构设计与有限元分析[J]. 机械设计, 2020, 37(7): 124-131.
CAI J P, LIAO J H, CHEN J, et al. Structural design and finite element analysis of supporting device for marine geomagnetic field vector measuring instrument[J]. Journal of Machine Design, 2020, 37(7): 124-131.
[14] 王喆. 海洋地球磁场矢量测量系统关键技术研究[D]. 北京: 中国地震局地球物理研究所, 2020.
WANG Z. Research on key technologies of marine geomagnetic field vector measurement system[D]. Beijing: Institute of Geophysics, China Earthquake Administration, 2020.
[15] GOLDENBERG F. Geomagnetic navigation beyond the magnetic compass[C]//Proceedings of IEEE/ION PLANS, 2006.
[16] CANCIANI A, RAQUET J. Airborne magnetic anomaly navigation[J]. IEEE Transactions on Aerospace & Electronic Systems, 2017(53): 67-80.
[17] GNADT R, BELARGE J, CANCIANI A, et al. Signal enhancement for magnetic navigation challenge problem[J]. 2020(7): 315-327.
[18] AARON C. Magnetic navigation on an F-16 aircraft using online calibration[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022(58): 420-434.
[19] 王立辉, 许宁徽, 刘庆雅. 基于粒子约束的粒子群地磁匹配算法[J]. 中国惯性技术学报, 2020, 28(6): 755-760.
WANG L H, XU N H, LIU Q Y. A PSO geomagnetic matching algorithm based on particle constraint[J]. Journal of Chinese Inertial Technology, 2020, 28(6): 755-760.
[20] 田哲旭. 基于向量搜索的地磁导航匹配算法研究[J]. 新型工业化, 2022(12): 5-8.
TIAN Z X. Research on geomagnetic navigation matching algorithm based on vector search[J]. New Industrialization, 2022(12): 5-8.
[21] 邓小波, 赵军瑞, 宋胜. 基于地磁方向熵的高空地磁匹配航迹选取方法[J]. 无线电工程, 2022(52): 840-845.
DEGN X B, ZHAO J R, SONG S. High altitude geomagnetic matching track selection method based on geomagnetic direction entropy[J]. Radio Engineering, 2022(52): 840-845.
[22] 欧超. 惯性/地磁组合导航方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
OU C. Research on inertial/geomagnetic navigation method[D]. Harbin: Harbin Institute of Technology, 2020.
[23] 保金宏. 基于地磁匹配的组合导航技术研究[D]. 杭州: 杭州电子科技大学, 2020.
BAO J H. Research on integrated navigation technology based on geomagnetic matching[D]. Hangzhou: Hangzhou Dianzi University, 2020.
[24] 王立辉, 刘庆雅. 飞行器编队PSO多维地磁匹配算法[J]. 电光与控制, 2021, 28(3): 41-45.
WANG L H, LIU Q Y. Multi-dimensional PSO geomagnetic matching algorithm for aircraft formation[J]. Electronics Optics & Control, 2021, 28(3): 41-45.
[25] 孙建港, 周诗超, 刘威, 等. 基于地磁匹配技术的室内定位系统设计[J]. 传感器与微系统, 2022(41): 97-100.
SUN J G, ZHOU S C, LIU W, et al. Design of indoor positioning system based on geomagnetic matching technology[J]. Transducer and Microsystem Technologies, 2022(41): 97-100.
[26] 赵琴, 徐卿, 齐静雅, 等. 基于天文/地磁组合的临近空间自主导航系统研究[C]//第十三届中国卫星导航年会, 2022.
ZHAO Q, XU Q, QI J Y, et al. The autonomous navigation system in near space based on astronomic/geomagnetic combination[C]//The 13th Annual Meeting of China Satellite Navigation, 2022.
[27] 马妍. 水下运载器惯性/地形/地磁组合导航系统关键技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
MA Y. Research on key technologies of INS/TAN/GAN integrated navigation system for underwater vehicles[D]. Harbin: Harbin Engineering University, 2015.
[28] 陈卓. 面向航空平台的地磁矢量导航关键技术研究[D]. 长沙: 国防科技大学, 2023.
CHEN Z. Research on key technologies of geomagnetic vector navigation for aeronautical platforms[D]. Changsha: National University of Defense Technology, 2023.
[29] 王向磊, 田颜锋. 基于地磁场的自主导航研究[J]. 地球物理学报, 2010(53): 2724-2730.
WANG X L, TIAN Y F. Autonomous navigation based geomagnetic research[J]. Chinese Journal of Geophysics, 2010(53): 2724-2730.
[30] 栾禄雨, 葛德宏, 陈建华. 基于多参量信息的水下地磁滤波导航算法[J]. 导航与控制, 2015(14): 80-83.
LUAN L Y, GE D H, CHEN J H. Geomagnetic navigation algoriths based on multi-parameter information[J]. Navigation and Control, 2015(14): 80-83.
[31] XIE W, QU Z, LI Q. A fast algorithm of the geomagnetic correlation matching based on MSD[C]//Proceedings of Third International Conference on Control, Automation and Systems Engineering(CASE), 2013.
[32] 徐晓苏, 吴剑飞, 徐胜保, 等. 基于仿射修正技术的水下地形ICCP匹配算法[J]. 中国惯性技术学报, 2014(22): 362-367.
XU X S, WU J F, XU S B, et al. ICCP algorithm for underwater terrain matching navigation based on affine correction[J]. Journal of Chinese Inertial Technology, 2014(22): 362-367.
[33] 吴凤贺. 地磁矢量匹配导航技术研究[D]. 长沙: 国防科技大学, 2017.
WU F H. Study on geomagnetic vector matching navigation technology[D]. Changsha: National University of Defense Technology, 2017.
[34] 朱文奇. 高性能地磁匹配导航算法的研究[D]. 西安: 西安理工大学, 2016.
ZHU W Q. Study on the high-performance of geomagnetic matching navigation algorithm[D]. Xi'an: Xi'an University of Technology, 2016.
[35] 刘亚云. 地磁匹配导航算法及地磁场模拟系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
LIU Y Y. Research on thegeomagnetic navigation matching algorithm and the geomagnetic field simulation system[D]. Harbin: Harbin Institute of Technology, 2011.
[36] CHEN K, LIANG W, LIU M, et al. Comparison of geomagnetic aided navigation algorithms for hypersonic vehicles[J]. Journal of Zhejiang University Science A (Applied Physics & Engineering), 2020, 21(8): 673-683.
[37] WANG Q, ZHOU J. Triangle matching method for the sparse environment of geomagnetic information[J]. Optik, 2019(181): 651-658.
[38] 付希禹, 孙永荣, 李荣冰. 基于 MSD 和 ICCP 改进的地磁联合匹配算法[J]. 南京航空航天大学学报, 2021(53): 928-933.
FU X Y, SUN Y R, LI R B. Improved geomagnetic united matching algorithm based on MSD and ICCP[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021(53): 928-933.
[39] 金子翔, 许苏鹏, 张贵宾, 等. 一种适用于地磁梯度匹配导航的 ISCCP 算法[J]. 物探与化探, 2022(46): 1225-1231.
JIN Z X, XU S P, ZHANG G B, et al. An ISCCP algorithm for geomagnetic gradient matching for navigation[J]. Geophysical & Geochemical Exploration, 2022(46): 1225-1231.
[40] CUENCA A, MONCAYO H. A geomagnetic-based integrated architecture for dead-reckoning navigation[C]//AIAA Scitech 2021 Forum, 2021.
[41] CUENCA A, MONCAYO H. Geomagnetic aided navigation using rao blackwellized particle filter[C]//AIAA Scitech 2023 Forum, 2023.
[42] 刘岳峰, 郑培晨. 一种基于贝叶斯估计的地磁辅助惯性导航算法[J]. 北京大学学报(自然科学版), 2017(53): 873-880.
LIU Y F, ZHENG P C. A Bayesian estimation-based algorithm for geomagnetic aided inertial navigation[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017(53): 873-880.
[43] KIM D, BANG H, LEE C. Approach to geomagnetic matching for navigation based on a convolutional neural network and normalised cross-correlation[J]. IET Radar, Sonar & Navigation, 2019 (13): 1323-1332.
[44] ABID M, LEFEBVRE G. Improving indoor geomagnetic field fingerprinting using recurrence plot-based convolutional neural networks[J]. Journal of Location Based Services, 2021, 15(1): 61-87.
[45] CUENCA A, MONCAYO H. Machine learning application to estimation of magnetospheric contributions for geomagnetic-based navigation[C]// AIAA Scitech 2022 Forum, 2022.