您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>新型磁热效应直接测量仪的研制与性能测试

新型磁热效应直接测量仪的研制与性能测试

138    2024-04-26

¥0.50

全文售价

作者:高磊, 李兆杰, 刘翠兰, 金培育

作者单位:包头稀土研究院 白云鄂博稀土资源研究与综合利用国家重点实验室,内蒙古 包头 014030


关键词:磁热效应直接测量仪;NdFeB永磁磁体;绝热温变


摘要:

基于Halbach旋转原理,设计三种尺寸的中空圆柱形NdFeB永磁磁体。利用有限元法计算的结果表明,NdFeB永磁磁体中间空隙处可产生匀强磁场,磁感应强度分别为1.0 T、1.5 T和2.0 T,方向和主磁体的磁化方向相同。NdFeB永磁磁体中轴线上磁场分布的测试结果和计算结果相吻合,误差在5 %以内。基于绝热温变的直接测量法,研制磁热效应直接测量仪。对典型磁热材Gd的测试结果表明,磁热效应直接测量仪可准确测量磁热材料的绝热温变,精度在0.2 ℃以内。该磁热效应直接测量仪对样品的形状要求较低,测量时间短,测试过程简便。


Development and performance test of new type magnetocaloric effect direct measurement device
GAO Lei, LI Zhaojie, LIU Cuilan, JIN Peiyu
State Key Laboratory of Bayan Obo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, China
Abstract: Based on Halbach’s rotation principle, three sizes of hollow cylindrical NdFeB permanent magnets with magnetic induction intensity of 1.0 T, 1.5 T and 2.0 T are designed, which can produce uniform magnet field in hollow space in this paper. The results of finite element method show that the direction of uniform magnet field produced is the same as that of the main magnets. The calculated results of magnetic field distribution on the central axis of NdFeB magnets agree well with the measured results, the error is within 5%. Based on the direct measurement method of adiabatic temperature change, a magnetocaloric effect direct measuring device has been developed. The experimental results of Gd show that the magnetocaloric effect measuring device can accurately measure the adiabatic temperature change, and the accuracy is within 0.2 ℃. The magnetocaloric effect measuring device has low requirement on sample shape and size, and it need short measuring time.
Keywords: magnetocaloric effect direct measurement device;NdFeB permanent magnet;adiabatic temperature change
2024, 50(4):97-101  收稿日期: 2022-02-03;收到修改稿日期: 2022-05-26
基金项目: 国家自然科学基金资助项目(52066001)
作者简介: 高磊(1993-),男,内蒙古乌兰察布市人,工程师,硕士,主要从事永磁磁路设计及磁制冷技术研究。
参考文献
[1] 钱苏昕, 戴巍, 鱼剑琳, 等. 磁制冷核心问题及高效利用新方式[J]. 制冷学报, 2020, 41(3): 11-37.
QIAN S X, DAI W, YU J L, et al. Key challenges and new approaches for efficient applications of magnetocaloric cooling [J]. Journal of Refrigeration, 2020, 41(3): 11-37.
[2] 刘敏, 俞炳丰, 胡张保. 室温磁制冷最新研究进展[J]. 制冷学报, 2007, 28(4): 1-11.
LIU M, YU B F, HU Z B. New development of research on room temperature magnetic refrigeration [J]. Journal of Refrigeration, 2007, 28(4): 1-11.
[3] 王琪, 刘斌, 陈爱强, 等. 工作频率及环境温度对往复式磁制冷效果的影响[J]. 制冷学报, 2017, 38(5): 76-81.
WANG Q, LIU B, CHEN A Q, et al. Influence of operating frequency and ambient temperature on reciprocating magnetic cooling [J]. Journal of Refrigeration, 2017, 38(5): 76-81.
[4] NIAMJAN N, SIRISATHITKUL C, CHEEDKET S. Substitution effect of magnetic materials in Halbach cylinder for magnetic refrigerators[J]. Proceedings of the National Academy of Sciences India Section A-Physical Sciences,  , 91(1): 189-194.
[5] 高强, 俞炳丰, 孟祥兆, 等. 室温磁制冷研究进展[J]. 制冷学报, 2003, 1: 33-38.
GAO Q, YU B F, MENG X Z, et al. Review on research of room temperature magnetic refrigeration [J]. Journal of Refrigeration, 2003, 1: 33-38.
[6] KAMRAM M S, AHMAD H O, WANG H S. Review on the developments of active magnetic regenerator refrigerators - Evaluated by performance[J]. Renewable & Sustainable Energy Reviews, 2020, 133: 110247-1-110247-16
[7] YU B F, LIU M, EGOLF P W, et al. A review of magnetic refrigerator and heat pump prototypes built before the year 2010[J]. International Journal of Refrigeration, 2010, 33(6): 1029-1060
[8] RAM N R, PRAKASH M, NARESH U, et al. Review on magnetocaloric effect and materials[J]. Journal of Superconductivity and Novel Magnetism, 2018, 31(7): 1971-1979
[9] ZIMM C, JASTRAB A, STERNBERG A, et al. Description and performance of a near-room temperature magnetic refrigerator[J]. Advances in Cryogenic Engineering, 1998, 43: 1959-1966
[10] SAITO A T, KOBAYASHI T, KAJI S, et al. Environmentally friendly magnetic refrigeration technology using ferromagnetic Gd alloys[J]. International Journal of Environmental Science and Development, 2016, 7(5): 316-320
[11] JACOBS S, AURINGER J, BOEDER A, et al. The performance of a large-scale rotary magnetic refrigerator[J]. International Journal of Refrigeration, 2014, 37(1): 84-91
[12] BJΦRK R, Bahl C R H, SMITH A, et al. Review and comparison of magnetic designs for magnetic refrigeration[J]. International Journal of Refrigeration, 2010, 33(3): 437-448
[13] ENGELBRECHT K, JENSEN J B, BAHL C R H, et al. Experiments on a modular magnetic refrigeration device[C]//Proceedings of the 3rd International Conference on Magnetic Refrigeration at Room Temperature. Des Moines, 2009: 431-436.
[14] BJΦRK R, SMITH A, BAHL C R H. Analysis of the magnetic field, force, and torque for two-dimensional Halbach cylinders[J]. Journal of Magnetism and Magnetic Materials, 2010, 322(1): 133-141
[15] RYU K S, NAM S H, JUNG J K, et al. Design and fabrication of 2-T rotating magnetic for magnetic refrigerator[J]. Journal of Magnetics, 2017, 22(1): 65-68
[16] 孙晓永, 张琦, 潘孟春, 等. 基于COMSOL Multiphysics的目标磁特性仿真分析[J]. 中国测试, 2017, 43(1): 122-126.
SUN X Y, ZHANG Q, PAN M C, et al.  Simulation analysis of the magnetic properties based on COMSOL Multiphysics [J]. China Measurement & Test, 2017, 43(1): 122-126.
[17] 李建, 张斌, 马锦程, 等. Lamb波电磁超声环能器三维仿真研究[J]. 中国测试, 2020, 46(9): 90-95.
LI J, ZHANG B, MA J C, et al. Research on 3D simulation of electromagnetic ultrasonic transducer based on Lamb wave [J]. China Measurement & Test, 2020, 46(9): 90-95.